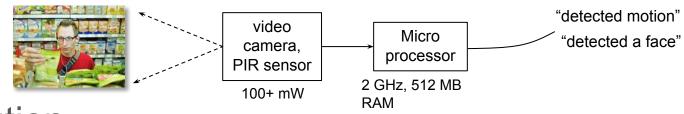
RICOH imagine. change.

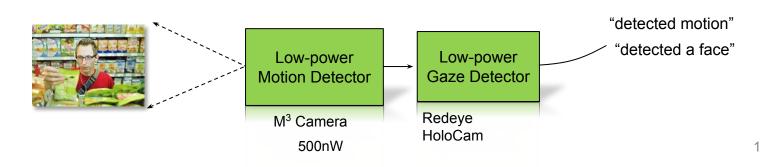
Low-power sensors for shopper detection

Prasanna Pavani Ricoh Innovations, Inc. February 4, 2013

Shopper Detection

- Product need
 Infosys, Kroger, etc.
- Problem

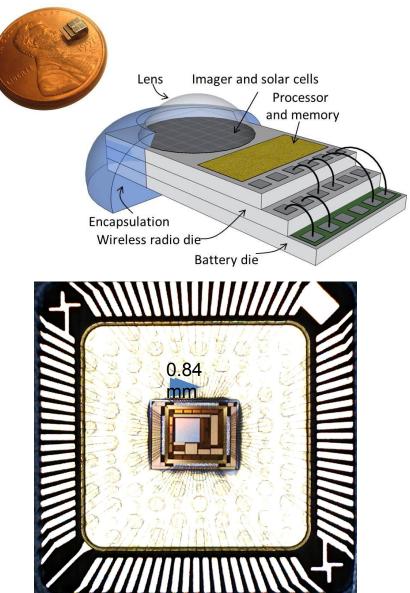



Shopper walks by product A

Shopper looks at product B

Camera and Passive IR sensors are power hungry

- Solution
 - Low-power sensors for motion and face detection

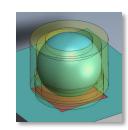


Low-power Motion Detector

M³ Camera

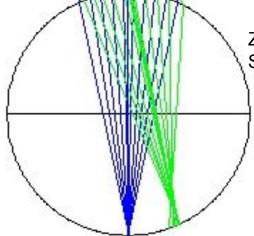
M³ Camera

- M³ Imager: Features
 - Ultra-low power consumption (500nW)
 - Conventional Imagers: 100+mW
 - Ultra-compact (0.84mm)
 - 22x smaller area than iPhone 5 primary camera
 - In-built motion detection hardware
- Optomechanical Challenge
 - Miniature M³ Optics Design
 - Precision Mounting
 - Compliance with Solar Cells
- RII Solutions for M³ Optics
 - 1. Ball Lens: Traditional Mount
 - 2. GRIN Lens: External Cap Mount
 - 3. Liquid Drop Lens: External Cap Mount



Ball Lens: Mounting and Imaging

- Features
 - High index (n=2)
 - Diameter: 1 mm
- Advantages
 - No lens-imager gap Mount
 - Orientation independence
- Drawbacks
 - Difficult to handle and mount
 - Image distortion



3D Model

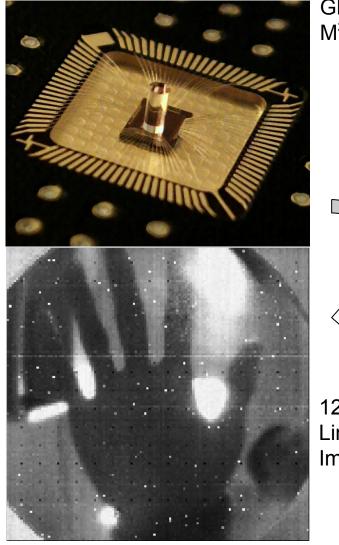
Part A Part B Side View 0.7620.8517 0.31750.8517 0.3175Top View 0.8517 1.50.8517 1.5

ZEMAX Design &

Distortion

GRIN Lens: Direct Mounting and Imaging

- Features
 - Gradient Index Cylinder
 - Diameter: 1 mm; Height: 2.4 mm
- Advantages
 - No lens-imager gap
 - Less difficult to handle & mount
- Drawback of Direct Mounting
 - Low yield


Design

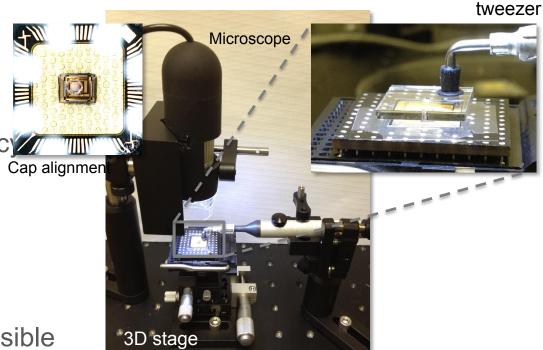
ens

- Twisted wirebonds
- Glue-imager interaction

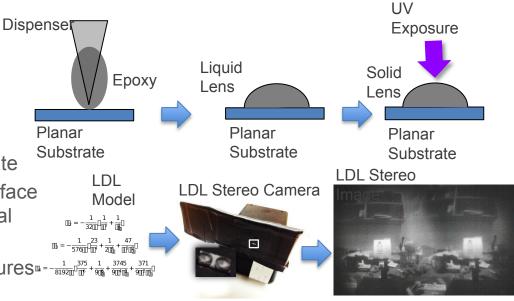
ZEMAX simulation

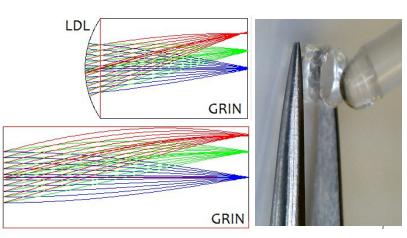
GRIN on M³ imager

128x128 Lingfei Image


GRIN Lens: External Cap Mounting and Imaging

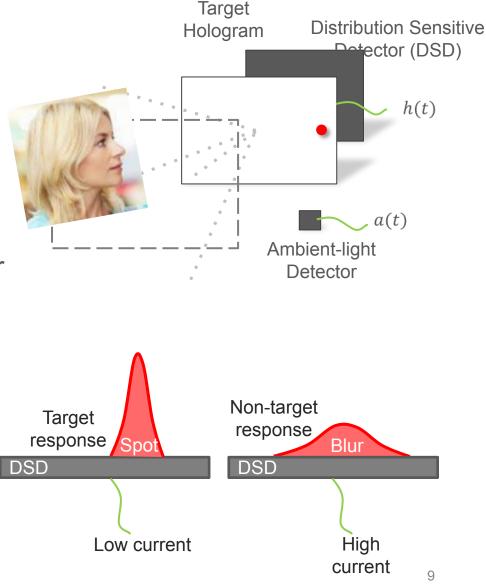
- Features
 - Acrylic Cap with 1mm hole
 - Lens attached to cap
 - Imager is glue-free
 - Wirebonds are untouched
- Process Protocol
 - 1. Transparency on M³
 - 2. Ext. Cap on transparency
 - 3. Lens in Cap
- Advantages
 - High yield
 - Automated mounting possible


Visible light image NIR image Vacuum


RICOH imagine. change.

Liquid Drop Lenses (LDL)

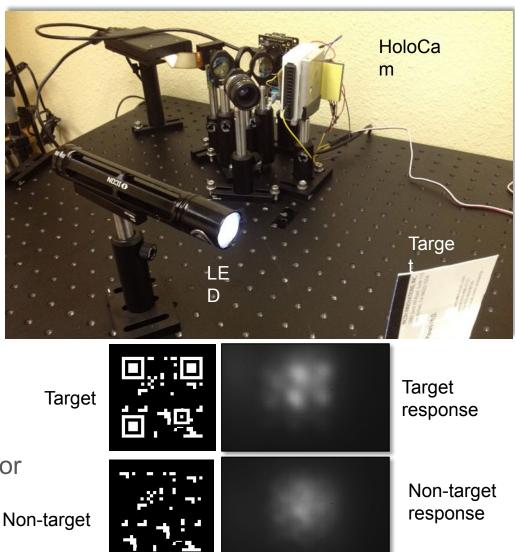
- LDL Protocol
 - RII proprietary technology
 - 1. High-viscous liquid epoxy is dispensed on a planar substrate
 - 2. Surface tension minimizes surface area of the epoxy to a spherical lens
 - 3. Exposure to ultra-violet light cures $= -\frac{1}{31920} \frac{375}{10} + \frac{1}{916} + \frac{3745}{9176} + \frac{371}{9176} + \frac{371}{9176}$
- Advantages
 - LDL+GRIN offers 33% reduction in lens height over GRIN
 - 8 degree improvement in field of view
- LDL+GRIN can be mounted with an External Cap Mount

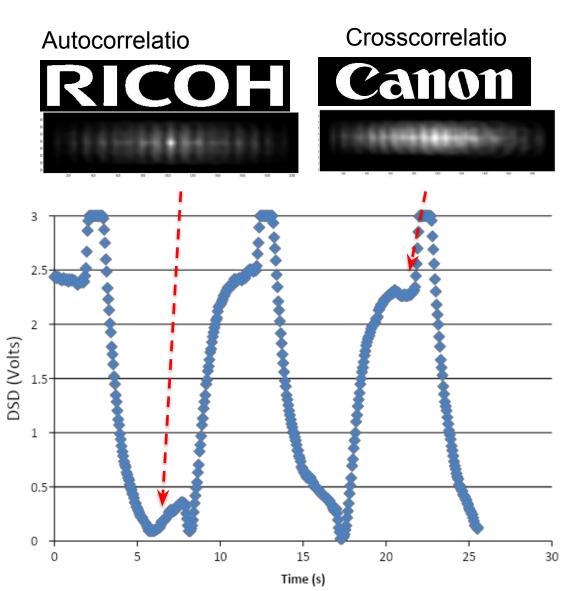


Low-power Gaze Detector

HoloCam

HoloCam: Technology

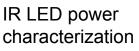

- Compact target detector
 - Target Hologram
 - Single-element optical processing
- Distribution Sensitive Detector
 - Novel single-pixel spot vs. blur classifier
 - Leverages local-currents in non-uniform illumination
- Features
 - Low power consumption
 - High speed
 - Wide field of view
 - Room light operation

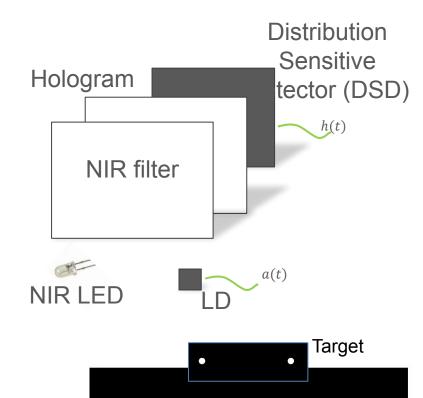

Upgraded HoloCam (since June '12)

- Realistic Targets
 - QR codes
 - Logos
 - Eyes
- Realistic illumination
 - Scattered LED white light
- Improved optics
 - Low light operation
- Improved detector
 - Lower noise
 - Higher amplification
 - Low power ambient detector
 - Holoboard

Logo Detection

- Objects
 - Target: RICOH
 - Non-target: Canon
- Target hologram
 - Designed for RICOH
- DSD Results
 - Lower voltage for RICOH
 - Higher voltage for Canon
 - Clear separation of levels
- Low-power ALD necessary for detection
- Lingfei: Classifier design

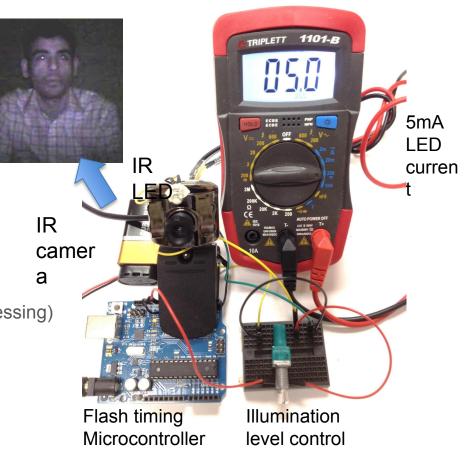



Hologram

RICOH imagine. change.

Gaze Detection with Red-eye HoloCam

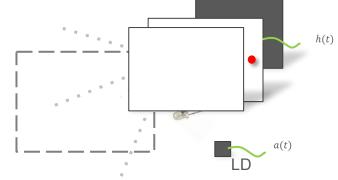
- Red-eye effect
 - Prominent appearance of retina
 - Flash close to lens
 - Most prominent in dark
 - Expanded pupil
- Red-eye HoloCam
 - NIR (850nm) LED triggered by M3 motion detector
 - NIR filter
 - Reduces face detection to twin-disc detection
 - Low-power IR LED



NIR redeve

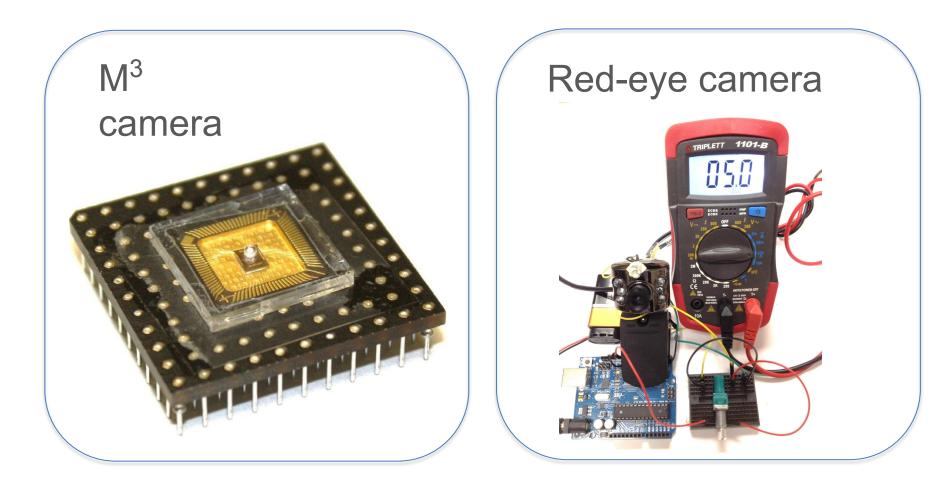
Battery lifetime for low-power Red-eye

- Low-power Infra-red LED
 - Draws 5mA@5V
 - 30 fps camera
 - Exp. time ≤ 33 ms
 - Energy per flash: 825 µJ
- AA battery capacity
 - 1200mAhr@1.5V
 - $6.5 \times 10^9 \, \mu J$
- Battery Lifetime (no energy harnessing)
 - IR flashes at 1Hz
 - Motion trigger activation
 - 10% of store time (~2 hrs)
 - Lifetime: 2.5 years
- Single AA battery can power IR LED for years



Future steps

- Motion Detection
 - Shipment of 2 M³ cameras for U. Michigan (1/2013)
 - Automated motion detection prototype
 - In collaboration with U. Michigan


	When?	Who?	What?
	10/10/2012	U. Michigan to Ricoh	2 Standalone Imager Chips
	10/31/2012	Consultant to Ricoh	Time/cost Estimate for Ball Lens Mounting on 2 Imagers
	11/30/2012	U. Michigan to Ricoh	Test-bed for standalone imager (Gyouho visit)
	1/31/2013	Ricoh to U. Michigan	2 M ³ cameras with External Cap Mounts
	3/31/2013	Ricoh to U. Michigan	Scalable method for mounting lenses on 100 M ³ imagers
	Fall 2013	U. Michigan	Release of 100 M ³ systems with lenses

- Gaze Detection
 - Red-eye HoloCam
 - NIR filter integration
 - Prototype

Demo

