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1. Objectives 
 

• To analyze the need-based-evolution of the camera from a pinhole camera1 (5th century BC) to 
a plenoptic camera2 (2005) 

• To design a contemporary digital camera 
 

 
 
2. Evolution 
 
In the first part of the project, an attempt will be made to throw light on the factors that motivated the 
evolution of the camera. Specifically, the following stages will be considered: 

• Ancient                -        Pinhole, Daguerreotype, etc. 

• Medieval              -        Film, celluloid, etc.  

• Contemporary      -        Digital, SLR, etc.  

• Upcoming            -        3D  
 
 
 

3. Contemporary digital camera design 
 
The second part of the project will rigorously analyze the design of a present day digital camera. The 
following questions (and many more) will be analyzed. 

• Is a digital camera really better that a film camera?  (Resolution analysis) 

• Why is a “good” camera expensive? (Multi-lens aberration correction) 

• 1, 2, 3,..10 Mega pixels... Does this “number” have a fundamental limit? (Diffraction) 

• F/#, NA, DOF, Resolution, Focal length, #Mega Pixels. Why so many parameters? 

• Why don’t ultra high resolution cameras have a long depth of field? (Ray analysis) 

• Why aren’t monochrome cameras extinct? (Bayer analysis) 

• Why can a camera zoom in/out when our eyes cannot? (Significance of distance) 

• What is all this hype about SLR cameras? (Single lens reflex) 

• Can a “passive” camera capture the 3rd spatial dimension? (3D field detection) 

• Are two successive images of the same object identical? (Noise) 
 

 

 
 
 

                                                                               12/16/06 
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Introduction 
 
This project has two parts. The goal of the first part of this project is to analyze the need-based-
evolution of the camera. It is interesting to see how the camera design evolved from a simple (yet 
elegant in some aspects like extended depth) pin hole design to multi element, multi thousand dollar, 
aberration corrected, zoom enabled SLR design. Significant breakthroughs in science might often 
appear as sudden developments to an outsider; but, for an insider, breakthroughs are largely gradual 
developments that depend heavily on the past research done in the field. Having said that, the 
motivation for this part of the project is not only to just look into the past, but also to possibly foresee 
where the field of camera lens design is marching towards.  
 
In contrast to the first part of the project, which would largely be an overview of camera evolution, the 
second part of the project would focus deeply on designing a contemporary multi-element digital 
camera, with rigorous aberration and design analysis. Initially, paraxial designs would be performed 
manually, and later on, thick element aberration analysis would be performed with ZEMAX. 
 
The forthcoming pages are organized in the following way: Section 1 analyzes camera evolution, 
Section 2 rigorously designs a digital camera, Section 3 has conclusions, Section 4 has 
acknowledgements, Section 5 provides a list of references, and Section 6 (Appendix) has the 
MATLAB code used for this project. 
 
 

1. Evolution 
 

1.1  Pin-hole camera     
 
A pinhole camera (Fig. 1) is nothing more than a fully closed box (whose interiors are typically 
painted black) with a small (“pin” sized) hole. A light sensitive material (film) placed on the side 
opposite to that of the pinhole records an inverted image of the object (any thing in front of the pinhole 
that scatters incident light) 
 
 

 
Fig 1: Pinhole Camera 
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Some pros and cons of a pinhole camera are listed below: 
 

Advantages Disadvantages 

Easy to make Time taking 

Amazing depth of field Bad resolution 

“No” aberrations Cannot zoom in/out 

 
 

Pinhole Camera Design: 
 
The light sensitive screen should necessarily be placed in the far field. Specifically, the z-distance 
between the pinhole and the camera is tightly related to the size of the pinhole and wavelength of light 
in the following way. 

λ

2

'
s

t >                                                                                  1.1 

 
t’- image distance 
s - pinhole diameter 

           λ - wavelength 
 
The magnification is the ratio of image to object distances. Once t’ is fixed, the diameter of the pinhole 
(s) is restricted by equation 1.1, or vice versa. 
 
 

 
   Courtesy: http://www5a.biglobe.ne.jp/~m-tado/image%2000.jpg 

 
The above photograph was taken with a pin-hole camera. Note that even though the resolution is not 
all that great, the depth of field is amazing! (In fact, several orders better than non-WFC3 enabled 
contemporary cameras. 
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1.2 Daguerreotype   
 
Daguerreotype is a “positive only” detector, which can be used on almost any imaging system (no 
specific lens design. Since there is no “negative”, images stored on a Daguerreotype cannot be 
reproduced directly. This was typically used with early pinhole cameras.  
 
Silver plates were exposed to iodine fumes to form a thin light-sensitive coating of silver iodide. The 
plates, which typically should to be used within an hour of coating them, are exposed to light for 10 to 
20 minutes, depending upon the light available. The plates are later developed by exposing them to 
mercury heated to 75 degrees Centigrade. The entire process of capturing and developing would take 
at least an hour! No wonder, people wanted something better!! 
 

 
A heavily scratched Daguerreotype 

Courtesy: http://users.marshall.edu/~brown/nauvoo/nt-d003.html 
 
 

1.3 Film, Celluloid cameras 
 

• Developed to overcome the disadvantages of pinhole camera. (Resolution, speed) 
 

 
 

• But, they ended up compromising on the advantages of a pinhole camera! (DOF, simplicity) 
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• It is from this stage of the camera evolution, lenses were predominantly used for imaging. 
Though the use of lenses is good in some aspects (resolution, speed, etc), these advantages 
invariably were plagued by aberrations. Some of these aberrations (like chromatic) were due to 
the inherent properties of the materials used for making lenses, while many others were 
because of the “spherical” shape of the lenses. In order to correct these aberrations, the use of 
multi-element lens design became almost inevitable, and consequently, the cost of “good” 
(aberration-less, high resolution) cameras had a steep rise. 

   
 

Some pros and cons of film cameras are listed below. 
 

 

Advantages Disadvantages 

Better resolution Limited depth of field 

Ability to focus Aberrations 

One “negative” can make 
infinite “positives” 

Expensive! 

 Post processing - Negative has to be 
developed 

 
 

 
1.4 Digital Camera  
 

• Replace film with “electronic pixel arrays” (like CCD) with a fairly linear response to the 
incident light intensity.  

 

• Make sure that the psf width of the imaging system is greater than a single pixel width to avoid 
aliasing. 

 

 
 
 

• This gets rid of the “grain noise” in film, but introduces new types of noise like quantum read 
noise, etc.  
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• The main advantage is that there’s no time/effort spent on “development”. Since the 
information is digitized, it can be readily transferred to a digital computer, could be processed 
(image processing) and printed, if necessary. 

 
 
 
 
 
 
 
 

 

 

 

 

 

1.5 SLR camera 
 

• SLR (Single Lens Reflex) cameras were invented in order to get rid of the imaging inaccuracy 
caused by the fact that in non-SLR cameras, the photographer sees through the “view finder” 
while the camera “sees” though the lens system. Hence, in non-SLR cameras, strictly speaking, 
the image is not exactly what the photographer wanted! (But, it’s very close, up to a transverse 
displacement error) 

 
 

 
 

• In a SLR camera, the “viewfinder” is eliminated, and so, both the photographer and the camera 
“see” through the lens system. What you see is what you get!  

 

• Normally, the retractable mirror is in the position as shown in the above picture. When the 
camera is “clicked”, the retractable mirror moves upward so that the rays get imaged on the 
detector. 

 

• All this makes sense only in cameras that do not have a “LCD” display screen. These days, 
most contemporary cameras have real time digital displays showing exactly what is seen by the 
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camera. The user is not forced to see though the viewfinder, and so, perhaps, the future of SLR 
cameras is at stake!  

 

• Typically, these cameras are bulky because  
      of the additional retractable mirror and the  
      mechanical system required to drive it. 

 
 
 
 
 

A Kodak SLR Camera 

1.6 Passive 3D Cameras 
 

• 3D cameras capture both range (z) and transverse (x/y) image profiles. 

• Examples include plenoptic camera and Wavefront coded cameras 
 

 
 

• Plenoptic camera uses lenticular arrays before the detector plane, while wavefront coded 
cameras use special amplitude/phase masks in the pupil plane. Both of these systems require 
some post processing to retrieve the actual 3D information. 

 

 
 
 

• Piestun Group’s4 3D camera uses diffractive holographic optics for 3D imaging.  
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1.7 Where are we heading? 
 
For a long time, one of the strong goals in camera design was to design a high resolution, cost 
effective, aberration less, extended depth, high field of view, fast (low F/#) cameras. In the last few 
centauries, we seem to have understood that simultaneously satisfying all of these requirements is 
impossible, as there are some fundamental limits (like NA vs DOF) involved. A clear understanding of 
these limits certainly is a sign of maturity, because it’s extremely important for an engineer to know 
not only what he can do, but also what he cannot do. 
 
So, is that it? Isn’t there anything more that can be done?  
Historically, the answer for such questions has always 
been “No! There’s more!!” Progress in the development  
of night vision cameras indicate that there’s a lot of   
interest in making these optical designs work in other  
regions of the EM spectrum. Progress in 3D cameras                Stanford’s Ren Ng with his 3D camera 
 (a relatively immature field!) indicates that cameras 
 can see something “more” (in this case, range) than transverse images. Camera designs seem to be 
progressing towards capturing something that’s hidden in the images produced by conventional 
cameras. “Target specific cameras”, which could essentially identify features in objects “optically”, 
could be yet another field to explore. 

 
 
 
 
 
 
             
 

---------------------  End of part 1 ---------------------------- 
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2. Contemporary digital camera design 
 
The goal of this part is to create an aberration corrected, zoom enabled, digital camera for imaging 
objects a distance greater than a few meters. (Infinity! in optics lingo).  
 
The specifications are listed below. 
 

 

Specifications 

 

 

Parameter 

 

Value 

 

Object location infinity 

CCD resolution 10 u per pixel 6 mega pixels 

CCD dimension 3cm x 2cm 

Color filter RGB 

Size ~10cm x 10cm x 12cm (max zoom) 

Weight 300g 

Cost $400 

Optical Zoom 5x 

Digital Zoom 
(interpolate) 

4x 

Aberration corrected Yes 

LCD 2.5” 

LCD pixels 230,000 

FOV Varies with zoom 

EM regime Visible 

 
A realistic camera would typically have many more specifications such as image processing, 
networking, battery power efficiency, self-timer, remote control, and so on. But, for the purposes of 
this “Optical System Design” project, these “details” can probably be ignored with impunity. 
 
 

2.1 Ray sketches 
 
In this section, many possible ways of designing a zoom enabled camera will be explored. Thin 
paraxial lenses will be used, and (hence) aberrations will not be dealt with. We are now in the 
idealized aberration free world of optics. The goal here is to skim through different possibilities, and to 
pick the one that suits our specifications. Once this is done, the next section on paraxial design would 
rigorously analyze the chosen design analytically with appropriate numerical data. 
 
Zoom lenses are often confused with varifocal5 lenses, which are lenses having variable effective focal 
length, but in these lenses, the detected image need not necessarily be in focus. In contrast, zoom 
lenses remain perfectly in focus while their effective focal length is changed. The difference is subtle. 
This can be achieved by either by mechanical compensation (mechanical systems that physically 
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displace appropriate lenses axially) or by optical compensation. Typically, a zoom lens design is called 
optically compensated, if the system remains in focus for three or more different focal lengths in the 
zoom range. Note that in all other intermediate regions, an optically compensated zoom lens suffers 
from slight defocus.   
 
Let’s start with a single positive lens and analyze if we can build our camera with it. Assume that this 
lens is imaging an object at infinity, as shown below. As the power of the lens is decreased, the image 
plane is pushed farther behind the lens. More importantly, the magnification is increased! In this 
example F1 < F2 < F3 < … and consequently I1 < I2 < I3 < … 
 
 

 
 
 
This basic principle is sufficient for designing a zoom lens. [We’ll tackle aberration less design a little 
later!]. For zooming in on an object, all we have to do is to reduce the focal length of the system and 
also simultaneously increase the distance between the image plane (detector) and the lens. We now 
need to come up with a system whose focal length can be varied dynamically.  
 
The focal length of a single lens in air gives us about three degrees of freedom – refractive index and 
two curvatures (n, c1, c2). Forget thickness, we aren’t dealing with thick lenses yet. But, once 
manufactured n, c1, and c2 are fixed, and so, for a given wavelength, and a given external medium, 
there’s no way that we can vary a lens’s focal length.  
 

)21()1( ccn −−=Φ  

 
The only possible way seems to be to use multi element lenses. The effective power of two lenses 
separated by a distance d is described by the following equation: 
 
 

2121 ΦΦ−Φ+Φ=Φ d  
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For two positive lenses separated by d, effective power decreases as d is increased. Note that the, the 
principal plane locations also vary as d is varied. For keeping the image in focus through out the 
zooming range, we should also change the locations of F1, F2 relative to the image plane.  
 
 

 
 

 
Hence, there is a need for two separate mechanical systems. The first one is for changing d so as to 
change the effective power, and the second one is for changing the location of F1, F2 with respect to 
the detector plane. Since the detector plane is typically fixed, the two lenses should be pushed forward 
(away from the detector) for zooming in/out, depending on the lenses. Note that these two mechanical 
systems are not independent. The distance through which the two lenses should be moved relative to 
the detector is a function of d. All this is to say that having smart optics isn’t just enough; for zooming 
to work properly, we need to have smart mechanical motions system too. 
 
Note that the same can also be implemented with one positive and one negative lens as shown below 
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But, in this case, since F2 is negative, the effective power and d bear a different relationship. 
Specifically, as d increases, the power also increases! This system seems to have some advantages 
over the two positive lens system, as it can potentially eliminate some off axis aberrations. The total 
petzval curvature can be made zero, leading to higher unaberrated field angles. But, lets not worry 
much  about aberrations at this point. 
 
In the above basic zoom systems, we are using the same set of lenses for both zooming and for 
imaging. Another possible way is to divide the job of zooming and imaging, and employ different  
systems for them. One popular technique is the afocal zoom system, that always takes in and gives out 
plane waves (parallel rays! in geometric optics). The second sytem images these parallel rays on to a 
detector. One obvious advantage of such a system is that the image plane is always a constant with 
respect to the second imaging system. For any zoom, the image plane is always at the same location. 
Another advantage could be that the zooming system could be made detachable. The system would 
work perfectly even without the additional pluggable zooming unit.  
 

 
 
 
The imaging system is simple! The bare minimum could be a single positive lens, and the image plane 
is always at a distance f, from the principal plane of the imaging lens. Of course, a single positive lens 
could be the worst possible lens for an aberrationless design; but again, let’s not worry about 
aberrations yet. After getting the basic components right, we could narrow down on each lens of the 
system and correct aberrations. 
 
The design of an afocal zooming system needs more thought, but, looks like many have thought about 
it before (not surprising!), and many elegant designs have been widely published. One such afocal 
zoom lens design is discussed in Malacara, Handbook of optical design. The system basically has a 
negative lens between two positive lenses. Variable zoom is obtained by moving the negative lens 
relative to the positive lenses. When the negative lens is at extreme positions (close to F1 or F3), the 
system is perfectly afocal. On the other hand, when the negative lens is some where in the middle, then 
the system as such is not afocal. In order to make it afocal, the position of the front lens F1 should be 
adjusted (mechanical compensation). 
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The distance between the two outer most positive lenses is essentially a function of the position of the 
negative lens. Hence, we need two mechanical systems again – one for translating the negative lens for 
changing the angular magnification, and the other for varying the distance between the two outermost 
positive lenses so as to keep the final output rays (of the afocal system) parallel.  
 
 

 
 
 
 
Since we are still in the “Ray sketch” part, at this point, we do not bother about the actual values of the 
focal lengths, expressions, distances, etc. As noted before, the goal at this point is to just have a quick 
look at different designs and to pick the best. Later, in the paraxial design part, we’ll come up with 
analytical expressions for the chosen ray sketch, and start the actual design procedure.  
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Sticking the zooming and the imaging systems together, the total system looks like the following. 
 
 

 
 
The above system seems to be good for the following two reasons 
 

1. Simple, yet serves the purpose elegantly.   
 
2. The idea of having a detachable zooming system is attractive. Looking from the marketing 

perspective, Zooming systems are always expensive (not only because of the optics, but also 
because of the mechanical systems involved), and so we might lose potential customers who 
can’t afford much. But, with a detachable zoom, the marketing could possibly argue “buy the 
basic imaging system now at a very cheap price, and Zoom lens can be purchased separately if 
required”. Much similar to Apple’s IPOD strategy; There are so many optional IPOD 
accessories that aren’t absolutely necessary for the IPOD to work. 

 
The above design clearly needs mechanical compensation in order to keep the image in focus. In other 
words, for every small movement of the negative lens F2, the front lens F1 has to be moved relative to 
the back lens F3 to keep the system afocal, and hence to keep the detected image in focus. 
 
The compensation can be made optical by replacing the central negative lens with a combination of 
three lenses (a positive lens in between two negative lenses). The central positive lens is stationary, 
while the negative lenses have to be moved to create variable zoom. As before, when the negative 
lenses are at their extremes, the system is perfectly afocal. As the negative lenses are moved from their 
extreme positions, the afocal condition is violated! This problem can be solved more elegantly (instead 
of displacing other lenses) by taking advantage of the central positive lens, which essentially is an 
additional degree of freedom in this system. 
 
 For instance, consider that the variable zoom lens gives a magnification range of  [M1, M3], where 
M3 > M1. Clearly, the system is afocal (and hence in focus) when the magnification is M1 or M3. The 
focal length of the central positive lens can be chosen such that the zooming system is afocal at some 
M2, that’s exactly inbetween M1 and M3. Say, M2 = 0.5 * (M1 + M3). Now, the system is perfectly in 
focal for three equally spaced magnifications in the entire zoom range. As the negative lenses are 
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displaced from their extreme positions (Magnification = M1) , the defocus would increase form zero, 
reach a maximum, and fall down to zero again when the magnification is M2. As the negative lenses 
are displaced further (in the same direction), the misfocus increases again until it drops to zero 
precisely when the magnification is M3. Clearly, the introduction of three new lenses would reduce the 
maximum amount of misfocus as the zoom is varied by displacing the negative lens alone. (no other 
mechanical compensation). If this misfocus is tolerable for the application under consideration, then 
the system is said to be optically compensated. 
 
 

 
 
 
Alright, that was a fancy optical compensation theory. But, let’s now analyze if this is really what we 
want. Clearly, optical compensation takes away the need for an additional mechanical system (good!). 
Static systems are always more robust than mechanical systems. Ideally we’d want to design a zoom 
system without any mechanical motion at all. But, from the above discussions, it’s hopefully clear that 
it’s impossible to design a stationary zoom system (unless, one can dynamically change the refractive 
indices or curvatures of lenses!), and so, it’s definitely nice that optical compensation helps us in 
getting rid of one of the two mechanical compensation systems. But, there’s no free lunch! The side 
effect is that it introduces misfocus (in the paraxial world!) in all zoom positions except for three. 
Misfocus widens the psf of the system, and hence the resolution decreases. Also, we need to introduce 
two additional lenses ($$ --  as this is a “visible light” camera, we need acromats). Further, the weight 
of the system would increase! (This is supposed to be a hand held camera – lighter the better) 
 
It’s time for a decision! Stationary, heavy, more expensive zoom design that could potentially hurt the  
resolution of the system or Light, less expensive, high resolution, mechanically compensated system? 
Yes, you guessed it right (?)! The author opts for the latter!  
 
Now, we have the basic ray sketch diagram. We can now go ahead and do a more detailed/careful 
paraxial design analysis. 
 
 

2.2 Paraxial Design 
 
This section will be entirely based on the final ray sketch chosen in the previous section. Here, we’ll 
be analyzing the system in detail by deriving expressions for important parameters like magnification, 
focal lengths, distances, etc. Since many of these parameters are interdependent, varying a parameter 
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will almost certainly affect another. Therefore, it is important to come up with plots of interdependent 
variables. Such plots are extremely helpful not only to come up with an optimal design, but also to 
convince the client that what we designed is indeed optimal. Developing such a design is the primary 
goal of this section. Needless to say, since we are still in the “paraxial” world, aberrations will be 
ignored. 
 
 

 
 
 
Consider the “chosen” ray sketch. The two positive lenses are separated by a distance d. In the 
configuration shown above, the negative lens is “actually” sticking on to F1. In other words, the 
negative lens is in its left extreme position. In this configuration, the distance d and the focal lengths 
F1, F2 should be chosen such that the zooming lens system is afocal. 
 
We will now derive analytical expressions for F1 and F2 as functions of the distance of separation d  
and the magnification of the system. These derivations are inspired from Malacara’s classic section on 
varifocal lenses, although, the author believes that the derivation in Malacara is more abstract that 
what is done below. 
 
Define F as the effective focal length of F1 and F2, when their distance of separation is essentially 
zero (above configuration) 
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The negative lens is chosen such that it’s power is greater than twice the power of the positive lenses. 
In other words, in the above configuration, F is negative. So, what we have in front of us is an afocal 
system with a front “effective” negative lens F and a back positive lens F1. This is nothing but a basic 
Galilean telescope. 
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1
1

F

F
M −=  

Magnification (M1) is the negative ratio of the focal lengths. The “1” in M1 indicates that this is valid 
only for this particular extreme position 1. Let’s now analyze M1. Since the negative lens is much 
more powerful than the positive lens, F is negative. Implies, M1 is positive. Again, since the 
magnitude of the power of the negative lens is over twice that of the positive lens, the focal length of 
the positive lens is longer!  
 
Implies,   0 < M1 < 1  

 
Therefore, in this orientation, the zoom system produces a minified image. Now consider the other 
extreme orientation, where the negative lens is in contact with the second positive lens (in the right) as 
shown below. 
 

 
 
The value of F remains the same as the two positive lenses have identical focal lengths. Again, this is 
an afocal Galilean telescope. But, this time the telescope is made of a front positive lens and a back 
negative lens. 
 
The magnification, as before, is given by the negative ratio of the focal lengths 
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Since we already proved that  0 < M1 < 1 , clearly 
 
M2 > 1 
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M1 and M2 define the zoom range of the system. That said, it’s important to understand that M1 and 
M2 are only the limits – Theoretically, any value of zoom between M1 and M2 can be achieved by 
moving the negative lens F2 between the two extremes. We are only constrained by the precision with 
which the negative lens can be displaced. 
 
Since the system is afocal in both of the above configurations, 
 
d = F + F1 
 
F = d – F1 
 
From the expression for M1 
 

11
1

1

1
1

M

d
F

M

dF
F

−
=

−
=

  

 

Since  
21

21

FF

FF
F

+
=  

 

211

1
2

11

2

)
11

(
11

12

)1(1

)1(1

)1(1

1

1
2

M

dM
F

d
M

d

M

d
d

M

d

dF

FdF

FdF

FdF

FF

FF
F

−
−=

−
−

−
−

−
=

−

−
=

−−

−
=

−
=

 

 
 
As noted earlier, this system requires mechanical compensation to retain the afocal condition when the 
negative lens is not in its extreme positions. Typically, this mechanical compensation is achieved by 
displacing the front positive lens with respect to the back positive lens. That said, it is important to 
precisely know the distance through which the front positive lens should be displaced corresponding to 
the change in location of the negative lens. We will now be deriving analytical expressions for nailing 
down the key parameters of the required mechanical compensation. 
 
For every small displacement m of the negative lens, assume that the front positive lens should be 
moved by a distance l in order to maintain the system in focus. [See figure below]  These two 
movements have to be done simultaneously maintaining the virtual image P at a fixed position in 
space. 
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The middle and the front lenses are separated by S 
 
S = m – l     Note: l < 0 
 

 
 
Writing the thin lens equation for middle negative lens, we have 
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Substituting the definitions for S and F,  
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The above relation is important. It relates l and m directly. All other parameters in the expression are 
constants. So, for a given displacement of the negative lens (m), we can now precisely determine the 
distance through which the front positive lens should be moved (l). 
 
The magnification of the lens at any position of the negative lens is given by 
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This relation is important too. M is typically displayed on the LCD screen of a digital camera as the 
zoom is being varied. 
 
Now that the paraxial system in hand is analytically characterized, it’s time for plugging in some 
values for lenses and distances.  
 
While doing this, we’ll have to remember the specifications: 
 

1. The system should be reasonably compact 
2. Not too expensive 

 
We now rigorously analyze various parameters like throw, zoom, cost, etc as functions of available 
degrees of freedom. F1, F2, F3, F4, and d are the variables shown in the paraxial ray sketch. But these 
parameters are not independent. For example, d depends on the focal lengths inorder to maintain the 
afocal condition. We have already assumed F1 = F3 in the above analytical analysis. Hence, F1, F2, 
and F4 are the true degrees of freedom. Of these three, F1 and F2 are important as they characterize 
the zoom lens.  
 

 

 

 

 



 22 

Design analysis 1 
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Design analysis 2 
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Design analysis 3 
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In “Design analysis 1”, we show the effective focal length of two lenses (one positive and the other 
negative, just as in the two extreme zoom lens positions) close to each other, as functions of f1 and f2. 
In the second plot, the power (inverse of effective focal length) is shown. Clearly, the effective focal 
length tends to infinity (power tends to 0) as the magnitudes of f1 + f2 tends to 0. (Note: f2 < 0)  
 
“Design analysis 2” illustrates the dependence of zoom on the two focal lengths. The throw tends to 
infinity as the f1+f2 tends to 0. But, note that in our system, f1 and f2 cannot take arbitaty values! For 
the zoom lens to be afocal, the negative lens must be atleast twice as powerful as the positive lens. 
Implies, f2 < 0.5 * f1. The second plot applies this constraint. 
 
“Design analysis 3” shows how the throw of the system varies as a function of f1 and f2. The total 
throw depends on f4 too! But, throw dependence on f4 is linear, and hence not interesting. In the 3D 
plots shown, we have assigned f4 = 6cm 
 
From these three design plots, we get a clear idea of the interdependence of the focal lengths, throw, 
and zoom. For instance, zoom can be increased arbitrarily by increasing F1. But, increasing F1 will 
result in an increase in throw. Ideally, we’d want large zoom and small throw. Since, the best of both 
worlds cannot be picked simultaneously, we will have to choose an optimum value of both. 
 
Our spec insists on ~5x zoom and ~12 cm throw. This can be achieved by choosing: 
 
F1 = 8cm 
F2 = -1.25cm 
F4 = 6cm 
 
Plugging these values in the earlier equations, we have 
 
Effective focal length in extreme positions of zoom, F = -1.4815 
Throw = 12.5185cm 
Zoom = 5.4x 
 
So, we have exceeded the specified throw by ~0.5cm. But, we have done well on the zoom! 
 
Now that we know the focal lengths, we can analyze the effect of varying the diameter of these lenses. 
In essence, vary the F/# and see the effect on cost. We’ll be analyzing resolution, field of view, etc. 
once we complete the paraxial design. 
 
From Edmund optics: 
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Almost linear! 
 

 
Hence, lower F/# (higher resolution) can be achieved only with a higher cost. As F/# decreases, 
aberrations increase, and even here, there’s a need to choose an optimum value of F/# so as not to 
shoot out of the budget while restricting the aberrations reasonably (more on this when we reach thick 
lenses) It is important to make sure that the diameter of F4 is same as F3 inorder to avoid vignetting. 
Note that lenses with large focal lengths can typically be made with large diameters. For our system, 
we do not want to go any faster than F/1 for two reasons.  
 

1) F/1 optics are too expensive 
2) F/1 means large aberration effects 

 
Also, in order to avoid making custom lenses (expensive!), we need to make sure that these lenses are 
available in the market. Clearly, we would need achromatic lenses, as this camera is designed to work 
in the visible.  
 
Edmund optics positive achromats:  F1 = F3 = 8cm and F4 = 6cm  D1 = D3 = 4cm D4 = 4cm 

 
 
Edmund optics negative achromats:  F2 = -1.25cm  D2 = 0.625cm 
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With this, we complete the paraxial design. As advertised, in this part we analyzed the chosen design 
both analytically and quantitatively, came up with design analysis plots that helped us in choosing the 
lenses. We also made sure that we have satisfied the initially proposed specifications. 
 
 

2.3 Thicken/Stops 
 
The goal of this section is to first introduce stops into the paraxial design, and then to calculate 
pertinent quantities like resolution, NA, etc. Once that’s done, the paraxial lenses will be replaced by 
their thick versions. In essence, the idea here is to make our imaging system more realistic.   
 
The detector should necessarily be the field stop, as we don’t want to leave any area of the detector 
unused. Consequently, the exit window is also the CCD detector. The entrance window can now be 
found by determining the image of the field stop in the object space. 
 
Since we have a dynamic lens arrangement that changes during operation, the Aperture Stop is not 
always the same. It depends on the location and size of the negative lens. Further, note that we don’t 
have the freedom of placing a physical stop (iris) in between the two convex lenses as that would 
obstruct the motion of the negative lens. 
 
Consider the following two ray diagrams. The concave lens acts as the aperture stop when it is close to 
the front lens. As the concave lens is moved away from the front lens, we see that rays are being cut 
off not by the concave lens, but by the first convex lens. Implies, the paraxial marginal ray and the 
chief ray are heavily dependent on the zoom position. But, note that the chief ray, regardless of the 
zoom position, must pass through the edge of the CCD detector, as the detector must be the field stop 
(we want to use the entire CCD array at all zoom positions!) 
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When the imaging system is used without the zoom lens, clearly, F4 acts as the aperture stop. In such a 
system, the resolution would decrease for off axis points, as the image plane cone angle (and hence, 
NAi) decreases. This can be tackled by using a telecentric design where the single imaging lens is 
replaced by two lenses separated by the sum of their focal lengths. An iris is placed exactly in the 
back/front focal plane of the first/second lens. 
 
When the imaging system is used with the zoom lens, with the current design, achieving telecentric 
condition is tricky. First, because the zoom lens is not static. Depending on the position of the middle 
negative lens, the throw of the system varies, and if we were to insist on making the zoom lens 
telecentric, we’ll have to design a yet another mechanical compensation system, that would literally 
displace the aperture stop based on the location of the negative lens. Besides, accomplishing 
telecentricity with an afocal system designed with a negative and a positive lens is different from that 
of two positive lenses. Note that in the two positive lens case, the aperture stop can be placed in 
back/front focal plane of first/second lens. This is not true in our design. 
 
Since this camera is designed to see objects at infinity, all incoming wavefronts are ~plane. They 
(obviously) could have different k vector directions, though. So, the input cone angle is ~0. Implies, 
input NA is 0, and has no big importance. What is important is actually the image space NA. Since the 
zoom system is always afocal, as noted before, the imaging lens always has its image at its back focal 
plane. 
 
Image space: 
 
Image space NA = nsin(theta) = 1 * sin((D4/2)/F4) = sin(2/6) = 0.3272 
 
Resolution = 1.22 * lambda / 2 * NA 
  
                  = 1.22 * .5 x 10^-6 / (2 x 0.3272)  
 
                 = ~0.93 microns. 
 
F# in image space (infinite conjugate condition) = 1/(2*NA) = f/D = 6/4 = 1.5 
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Depth of focus in image space:  
 
DOF = 1.2 * lambda / (NA^2) = 1.2 * 0.5 * 10^-6 / (0.3272)^2 = 5.6um  (image space) 
 
The CCD parameters should be chosen carefully so as not to introduce aliasing. The pixels of the CCD 
are essentially sampling the spatial field incident on it. In order to avoid aliasing, this sampling should 
be done atleast at nyquist. In other words, the spatial frequency of the CCD pixels should be atleast 
twice the spatial (not temporal!) frequency of the field. Fourier optics gives us a yet another way of 
looking at this. An undersampled system (aliasing! – bad!) is one in which the width of a single CCD 
pixel is wider than the psf of the imaging system. In the frequency domain, the successive spectral 
orders over lap, and higher frequencies get wrongly represented as lower frequencies. In a critically 
sampled system (OK!), the pixel width and the psf width are just about equal. The successive spectral 
orders are very close (their tails almost touch), but they don’t overlap. On the other hand, in an 
oversampled system (Good!), the pixel width is much smaller than the psf width, and the frequency 
orders are widely separated in the spectral domain. In reality, most carefully designed systems are over 
sampled, and so will be ours. 
 
Consider a 3 cm x 2 cm CCD detector with pixel width 10um (including pixel spacing).  
 
 Aspect ratio = 3:2 
 
Implies, number of columns = 3 * number of rows = 3 x 10^-2/10^-5 = 3000 
 
3000 x 2000 pixels = 6 Megapixel camera! 
 
Now, a 10um CCD pixel will continue to be in the over sampled regime until the psf gets smaller that 
10um. From nyquist, this means that all spatial frequencies lesser than 1 / (2 * 10u) can be accurately 
represented. In order to prove that this spatial pixel resolution is sufficient, we recall that the smallest 
possible width of psf bears an inverse fourier transform relation with the pupil width. Strictly 
speaking, this is true only for coherent systems. In an incoherent system, the psf width approximately 
goes as the inverse of the optical transfer function, which is the autocorrelation of the pupil function. 
Nevertheless, they are close.  
 
Hence, for the system to be critically sampled, the pupil function diameter should go as the inverse of 
the pixel size, which is a very huge number when compared to our designed pupil. As our pupil is 
small, the psf is large – much larger than the pixel width. Therefore, we conclude that the system is 
over sampled relative to the resolution of the optics. 
 
We now move away from the thin lens approximation and start using thick lenses. One key point to 
consider is that, the moment thin lens approximation is violated, the principal planes of a lens are not 
necessarily in the physical edges of the lens. [Implies, the front and back focal lengths are not 
necessarily equal to the effective focal length] So, we have to make sure that the distances calculated 
before are applied from the principal planes, instead of the physical location of lenses. 
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To start with, we use symmetric achromatic biconvex and biconcave lenses. Because of the symmetry, 
the principal planes are always located inside the lens. (Slightly away from the center). The distances 
can be calculated accurately from the thickness, curvatures and refractive index of the lenses.  
 
Specifically, 
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h1 and h2 are the distances of the principal planes from the physical edges of lens. f,n,d and R  
represent the focal length, refractive index, thickness, and radius of curvature respectively. In general, 
if we were to design a lens, we would first decide on the glass (hence n), calculate the curvatures, and 
decide on the thickness. Once that’s done, we can either look around if we can find that particular lens 
in the market; or, we’ll have to make a special order to design the lens we want (very expensive 
option) 
 
By making sure that the lenses we want are readily available from Edmund optics, we have made sure 
that we don’t run in to such problems.   
 
Edmund optics positive achromats:  F1 = F3 = 8cm and F4 = 6cm  D1 = D3 = 4cm D4 = 4cm 

 
 
Edmund optics negative achromats:  F2 = -1.25cm  D2 = 0.625cm 
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We are now done with the thicklens design – We know exactly what lenses to use and where to place 
them. We also numerically characterized a few important metrics like resolution, depth of field, NA, 
and F/#, which inturn helped us in determining the configuration of the CCD detector. But, we did not 
do  much for correcting aberrations, other than using achromatic lenses. We expect to see many more 
aberrations in reality. We’ll deal with aberrations once we get into the next section, where we’ll be 
plugging our above design into ZEMAX. 
 
Before jumping on to the ZEMAX design, we’ll now have a quick look into a few important 
aberrations that could potentially plague our system. A clear understanding of what aberrations a 
system has is imperative to come up with optimum solutions to minimize (if not eliminate) them. 
 
 
 
Aberrations 

  

• One of the main goals of this project is to come up with an “aberration corrected” camera lens 
design 

 

 
 

 

• Rays (from a same point) hitting different regions of the lens get focused at different points! 
Implies, there is no single image plane in the non-paraxial limit.  

• Spherical aberration can be minimized by stopping down the aperture. But, only at the cost of 
minimizing the NA, thereby degrading the resolution of the imaging system. 
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• Refractive index of most materials increases with frequency, which means that a same lens 
might have more power for a blue ray than for a red ray. Implies, colored objects will not be 
imaged properly, unless “some special” techniques (like achromatization) are used.   

• Off axis aberrations like coma and astigmatism also plague an imaging system. 
 

 
Resolution - Depth of field trade off 

 

• Resolution is proportional to NA (n*sin(half cone angle)), while the depth of field  is inversely 
proportional to NA^2. Implies, higher the resolution, lower the depth of field. 

 

• Examples: Microscopes have great resolution but poor depth of field. 
      Pinhole cameras have great depth of field but poor resolution 
 

 

 
 
 

• All this can be visualized by just comparing the diameter of the blurs (b1 and b2) in the 
following two diagrams. When the aperture is stopped down (NA, resolution decreases), but 
the diameter of the blur also decreases. Implies, depth of field increases. 

• For obtaining infinite resolution (resolve all frequencies!), the diameter of the exit pupil should 
be infinite (cone angle literally tends to 90 degree!) 
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2.4 ZEMAX design 
 
We pretty much have the complete design with us now. But, as the design was done in the paraxial 
world, we completely ignored aberrations. Building an aberration corrected design is many times an 
optimization (number crunching!) problem, and so beyond the scope of paraxial design tools. The idea 
here is to do our best on the paraxial design (hopefully, we already did that), and to ask ZEMAX to 
optimize for best results (Diffraction limit!). Assume wavelength = 0.5um. 
 
The goal of this section, therefore, is to analyze the ray/wavefront abberations quantitatively and to 
comeup with the best possible aberration corrected design that satisfies our specifications. To get 
started, we’ll model our paraxial system in ZEMAX and see if our paraxial system works or not. Then, 
we’ll replace the paraxial lenses with thick achromatic lenses that we chose in the previous section, 
and analyze the aberration characteristics. Finally, we’ll optimize our design to reach diffraction 
limited performance. (While doing so, we might have to compromise on some specifications) 
 
We now recall that the system is perfectly afocal (without mechanical compensation) when the 
negative lens is in either of its extreme positions. 
 

Negative lens in left extreme position: 
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Negative lens in right extreme position: 

 
When the negative lens is moved somewhere to the middle, the zoom lens system is not afocal 
anymore, and so, we expect a misfocus in the image plane. 
 

Negative lens somewhere in between the two positive lenses (before mechanical compensation) 
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In order to get rid of this misfocus, the zoom lens has to be made afocal again by using mechanical 
compensation. One might wonder why the image plane should not be moved back to get rid of this 
misfocus. Doing so would mean that the detector is not necessarily at the back focal plane of the 
imaging lens (for all zoom values), which would require a mechanical compensation system in the 
imaging system part. Since this “detachable zoom” camera has been designed such that the cost of the 
camera part is very less, we do not want to introduce a mechanical compensation system in the camera 
part. Instead, we’d like to have it in the zoom lens part such that the zoom lens is always afocal 
regardless of the position of the negative lens. 
 
We now introduce a mechanical compensation system to move the front positive lens forward in order 
to make the system afocal again. ZEMAX optimizer is used optimize the distance between the first 
positive lens and the middle negative lens (first lens thickness, in ZEMAX lingo) in order to 
accomplish mechanical compensation. 
 
The result is shown below. There’s no misfocus anymore. Note that this has been accomplished by 
changing the first lens thickness from ~3cm to ~6cm 
 
 
 

Negative lens somewhere in between the two positive lenses (after mechanical compensation) 

 
 
 
With the above analysis, we have (hopefully) convinced ourselves that ZEMAX agrees with the 
manual paraxial design we did earlier. It’s time to stick in thick lenses. As noted earlier, we make sure 
that the distances of separation of lenses are based on the front and back focal lengths (not the 
effective focal lengths!) 
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Edmund optics positive achromats:  F1 = F3 = 8cm and F4 = 6cm  D1 = D3 = 4cm D4 = 4cm 

 
 
Edmund optics negative achromats:  F2 = -1.25cm  D2 = 0.625cm 

 
 

 
The above achromatic lenses are picked from ZEMAX lens catalog. The orientation of the lenses is 
important to minimize spherical aberration. The more curved surface should always point towards the 
plane wave. A quick look at the ray diagrams (drawn in earlier sections) would reveal that lenses F1, 
F2, and F4 can be plugged in as such, while the lens F3 has to be flipped. 
 

 

 

Negative lens in left extreme position (Before flipping F3) 
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Negative lens in left extreme position (after flipping F3) 

 
 

After adding misfocus to correct spherical aberration 
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The aberration is largely spherical. Note that the maximum spherical aberration is ~1546um when F3 
is not flipped! After flipping F3, just as expected, the spherical has reduced to ~408um! The spherical 
aberration can be reduced further by adding intentional misfocus. We use optimizer to optimize the 
image plane distance to minimize SA. After optimization, the maximum spherical aberration is 
~126.42um. (Much better than before) 
 

 
 
Though we have done a reasonable good job in reducing the spherical aberration from ~1546um to 
~126.42um, we are no where near the diffraction limit yet. In order to minimize the aberration further, 
we start stopping down the system. Note that SA is proportional to the cone angle, but we should 
realize that by stopping down, we are compromising the system NA (and hence the resolution). As the 
system is too far from the diffraction limit now, ZEMAX refuses to show the “diffraction encircled 
energy”, complaining that the data is too inaccurate. 
 
When we stop down the imaging lens to 20mm diameter, max SA reduces to ~60.44um, and we can 
see how well the system performs relative to the diffraction limit. 
 
Stop diameter: 20mm  
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Upon stopping the system down more and more, the system tends to approach the diffraction limit 
(only at the cost of resolution!). For instance, stopping down to 10mm reduces the spherical aberration 
to ~8.4um. We reach diffraction limit when the stop diameter is less than ~7.8mm 

 
 

 
 
 
 

Stop diameter: 10mm  

 
 
 



 40 

Stop diameter: 7.8mm 

 
 
Note that every time we reduce the stop size, we also optimize the system. 
 

Chromatic aberration: 
We now compare the “chromaticity” of the system as the system is stopped down 
 
Stop diameter: 10mm 
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Stop diameter: 6mm 

 
 

Stop diameter: 10mm       Stop diameter: 6mm 

 
 
Despite the use of achromatic lenses, the system is still chromatic to some extent. This is because 
achromatic lenses are typically corrected only for two different wavelengths, and not through out the 
spectrum. Nevertheless, had it not been for these achromatic lenses, the chromatic aberration would 
have been worse. Also, it can be seen that the chromatic aberration varies with stop size too. As the 
stop size is decreased from 10mm to 6mm, the difference in the max SA of neighboring wavelengths 
decrease. (Please see the ray fan data) 
 
The off axis performance of the system will be analyzed now. Since we are assuming infinite 
conjugates, the field is represented in terms of angles (not object height!). In the following example, 
field angles 0, 0.5, and 1 degrees have been chosen. At the first look these angles might appear really 
small, but it’s important to remember that even small angled rays expand out as they reach infinity. 
Specifically, the length spanned by a ray at an angle theta after passing through a distance (on axis 
projection) of z is ztan(theta). Even though tan(theta) is small, z is very large.  
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The onaxis point suffers only from spherical aberration, while the off axis points are plagued by coma 
(The comet tail can be clearly seen in the spot diagram). Since we need a reasonable performance 
through out the field of view, we now would like to optimize our system so as to reduce off axis 
aberrations. As we have already decided not to make custom designed lenses (expensive!), the degrees 
of freedom we have at this point are the distances. The obvious way of reducing offaxis aberrations is 
by restricting the field of view (angular, in our case). But, that would be the last resort when we have 
explored all other possibilities. 
 
To start with, let’s optimize distances. First, the image plane distance and the distance between the two 
positive lenses of the zoom lens are specified as variable parameters. 
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The coma seems to have shifted from one direction to another and the on axis spot is more aberrated 
than before! Reject this! We now optimize over image, f2, and f3 lens distances. 
 

 
There’s a problem. Optimizing over three different distances has changed the zoom! We want to 
optimize the system at its mimimum zoom configuration (negative lens in its left extreme position). 
We’d consider other zoom locations a little later. Because of this reason, we reject the idea of 
optimizing over three distances. In order to get back to the diffraction limit, we’ll have to stop down 
the aperture a little bit, and also reduce the field angle a bit. 
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We are now done with the aberration analysis for one zoom position. The same can be done for other 
zoom positions too. Strictly speaking, optimization over image plane distance at every zoom location 
would give non-identical results for best possible system configuration. But note that the image plane 
distance is a constant. (we don’t have any mechanical compensation in the camera subsystem). Hence 
the best we could do is to figure out the optimum image plane distance in the middle of the zoom 
range. On the other hand, optimization over F1 distance is good. It’s good because F1 distance can be 
dynamically varied for different values of zoom. 
 
In the following few pages, aberration analysis for other zoom locations will be performed. 
 
Negative lens at its right extreme location (maximum zoom)  

 

 
We have ~diffraction limited performance for offaxis (0.5degree) angle and for all three colors (0.5, 
0.6,and 0.7um) 
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Negative lens somewhere in between the two positive lens (middle of the zoom range) 

  

 
 
We have ~diffraction limited performance for offaxis (0.5degree) angle and for all three colors (0.5, 
0.6,and 0.7um) 

 
3. Conclusion 
 
In section 1, we analyzed the need-based evolution of the camera. Later, we went on to design a 
contemporary digital camera. Ray sketches, paraxial designs were analyzed and the most suitable 
design was chosen. Finally, ZEMAX was used to characterize the aberrations and also to optimize the 
system. At this point, we are well equipped (with results) to answer the questions raised in the first 
page. 
 

• Is a digital camera really better that a film camera?   
Yes! It permits easy post processing. The resolution of a typical film is much higher than a 
contemporary CCD detector. As we saw earlier, the resolution of a camera is primarily 
dependent on the NA of the system. That’s not to say that detector resolution is unimportant. 
For avoiding aliasing, the detector pixel spatial frequency should always be greater than twice 
the spatial frequency of the field (Nyquist). 
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• Why is a “good” camera expensive?  
As we noted, cost increases as F/# decreases. Also, multi element lenses are required for 
aberration correction. 
 

• 1, 2, 3,..10 Mega pixels... Does this “number” have a fundamental limit?  
Yes, there’s not much point in increasing the number of pixels beyond nyquist. A slight over 
sampling is considered good. But, over sampling by anything more than a factor of 2 is a over 
kill! Since all cameras have a limited field of view (to minimize off axis aberrations) [we faced 
this problem too!], the detector dimensions cannot be made arbitrarily large. 

 

• F/#, NA, DOF, Resolution, Focal length, #Mega Pixels. Why so many parameters? 
At this point, it should (hopefully) be clear that all of these parameters are interdependent. 
They all depend on these fundamental parameters: image/object distances, lens parameters like 
n,Cs,ds, etc. If they are all functions of the same variables, why have them at all? Well, 
consider the following: Diamond, graphite, and charcoal. They all are made only of carbon 
(with different lattice structures and densities, of course!) How would it sound if one were to 
go to a jeweler and ask for a carbon crystal arranged in a cubic bravais lattice structure with 
density 3.52?? Quite similarly, F/#, NA, DOF, etc are used to characterize various important 
features of a camera. For example, F/# represents the speed of a camera. DOF determines how 
far objects can be displaced in z, and yet be imaged in focus. Interdependent parameters may 
sometimes appear redundant, but a deeper look would reveal the immense convenience they 
offer during analysis.  

 

• Why don’t ultra high resolution cameras have a long depth of field?  
Resolving power is proportional to NA, while DOF is inversely proportional to the square of 
NA. 

 

• Why aren’t monochrome cameras extinct? 
We didn’t talk about this at all in the project, as the answer to this question has nothing to do 
with system design. Nevertheless, color ccd detectors typically are configured using what’s 
commonly known as bayer pixel arrangement. In essence, a color ccd detector has R, G, and B 
pixels periodically arranged. The post processing typically results in loss of resolution, as it 
involves averaging in space (low pass filtering). Hence, unless the system is highly 
oversampled, it’s not advisable to use color ccd detectors.  

 

• Why can a camera zoom in/out when our eyes cannot?  
Zoom lenses can dynamically vary their effective focal lenses and yet be in focus. This is 

 typically achieved by mechanical compensation. Our eye lens can change its focal length too, 
 but there’s no system in place for mechanical compensation. 

 

• What is all this hype about SLR cameras? 
 The view finders in SLR cameras see through the main lens used for imaging, and hence there 
 can be no transverse displacement between the image that’s seen through the view finder and 
 the image that’s recorded. LCD panels in modern digital cameras could potentially eradicate 
 SLR cameras. 

 

• Can a “passive” camera capture the 3
rd

 spatial dimension? 
 Yes. PSF of an imaging system varies with defocus. Passive 3D cameras typically alter the 
 imaging system in order to control the variation of psf with defocus in a controlled/desirable 
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 way. These cameras are come under the category of computational imaging systems, where 
 ~half of the work is done in optics and the other half is accomplished with signal processing. 
 
 
 

• Are two successive images of the same object identical? 
 No. Detector (digital) noise varies with time, as noise (Ex: shot) is a random function generally 
 with a well defined probability distribution function (For shot, it’s poissonian). The reason for 
 the randomness is because of the uncertainty in the arrival time of a photon. Films suffer from 
 grain noise. 
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6. Appendix - MATLAB code 
 
Function used for raytracing 
% Paraxial ray tracing through many surfaces. Mouroulis 4.1 

% 

% INPUTS:  

% c      - array of curvatures 

% d      - array of distances 

% n      - array of refractive indices 

% h_next - initial height 

% u_next - initial angle 

% 

% OUTPUTS: 

% h_next - final height 

% u_next - initial height 

% 

% Sri Rama Prasanna Pavani <pavani@colorado.edu> 

function [h_next, u_next] = raytrace(c, d, n, h_next, u_next) 

 

% sanity check! 

if (nargin ~= 5 || length(c) ~= length(d) || length(n) ~= length(c) + 1) 

    error('Incorrect argument list!'); 

end 

 

for ii = length(c) 

    u_next = (-h_next * c(ii) * (n(ii+1) - n(ii)) + n(ii) * u_next)/n(ii+1); 

    h_next = h_next + d(ii) * u_next; 

end 

 

 

Function to calculate throw and zoom: 
% calculates the eff. focal length F, throw, and zoom based on f1 and f2 

% @author: pavani@colorado.edu 

function [] = spec(f1,f2) 

 

if nargin == 0, 

f1 = 10; 

f2 = -4; 

end 

 

 

f3 = 6; 

F = (f1 * f2)/(f1 + f2) 

throw = f1 - abs(F) + f3 

         

% define zoom as the maximum magnification possible example: 6x 

m1 = -F/f1; 

zoom = 1./m1 

 

Effective focal length: 
% effective focal length plots 

% @author: pavani@colorado.edu 

 

f1 = linspace(1,10,50); f2 = -f1;    

len = length(f1); 

 

for ii = 1:len 
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    for jj = 1:len 

        F(ii,jj) = (f1(ii) * f2(jj))/(f1(ii) + f2(jj)); 

    end 

end 

 

imagesc(f1,f2,F); cmg;cb; 

xlabel('f1 (cm) '); 

ylabel('f2 (cm)'); 

zlabel('eff. focal length (cm)'); 

title('eff. focal length') 

 

%power 

figure; 

imagesc(f1,f2,1./F); cmg;cb; 

xlabel('f1 (cm) '); 

ylabel('f2 (cm)'); 

zlabel('power (cm^-1)'); 

title('power') 

 

 

 

Zoom and throw plots: 
 

% Zoom and throw plots 

% @author: pavani@colorado.edu 

 

f1 = linspace(1,10,50); 

f2 = -f1; 

    

len = length(f1); 

 

for ii = 1:len 

    for jj = 1:len 

        F(ii,jj) = (f1(ii) * f2(jj))/(f1(ii) + f2(jj)); 

    end 

end 

 

imagesc(f1,f2,F); cmg;cb; 

xlabel('f1 (cm) '); 

ylabel('f2 (cm)'); 

zlabel('eff. focal length (cm)'); 

title('eff. focal length') 

 

%power 

figure; 

imagesc(f1,f2,1./F); cmg;cb; 

xlabel('f1 (cm) '); 

ylabel('f2 (cm)'); 

zlabel('power (cm^-1)'); 

title('power') 

f1 = linspace(1,10,100); 

f2 = -f1; 

len = length(f1); 

 

%Assume  

f3 = 6; 

 

throw = zeros(len); 

zoom = zeros(len); 

for ii = 1:len 
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    for jj = 1:len 

     

       if (-(f2(jj)) < 0.5*f1(ii)) 

         F = (f1(ii) * f2(jj))/(f1(ii) + f2(jj)); 

        throw(ii,jj) = abs(F) + f1(ii) + f3; 

         

        % define zoom as the maximum magnification possible example: 6x 

        F = (f1(ii) * f2(jj))/(f1(ii) + f2(jj)); 

        m1 = -F/f1(ii); 

        zoom(ii,jj) = 1./m1 ; 

 

    end 

    end 

end 

 

mesh(f2,f1,zoom); cmg;  

xlabel('f2 (cm) '); 

ylabel('f1 (cm)'); 

zlabel('zoom '); 

title('Zoom vs focal lengths f1 and f2') 

 

figure; 

mesh(f2, f1, throw); cmg;  

xlabel('f2 (cm) '); 

ylabel('f1 (cm)'); 

zlabel('throw (cm) '); 

title('Throw vs focal lengths f1 and f2') 

 

 

Cost vs d1,d2 plots 
 
% cost vs d1, d2 plots 

% @author: pavani@colorado.edu 

 

d1 = linspace(1,10,100); 

d2 = -d1; 

len = length(d1); 

k = 2; 

 

cost = zeros(len); 

for ii = 1:len 

    for jj = 1:len 

     

        cost(ii,jj) = k*d1(ii) + k*d2(jj); 

 

    end 

    end 

end 

 

 

figure; 

mesh(d2, d1, cost); cmg;  

xlabel('d2 (cm) '); 

ylabel('d1 (cm)'); 

zlabel('cost ($) (arbitraty scale)'); 

title('Cost vs d1 and d2') 


