
 1

DESTINATION ADDRESS INTERPRETATION FOR

AUTOMATING THE SORTING PROCESS OF

INDIAN POSTAL SYSTEM

PROJECT WORK

SUBMITTED IN PARTIAL FULFILMENT OF THE

REQUIREMENTS FOR THE AWARD OF THE DEGREE OF

BACHELOR OF ENGINEERING

(ELECTRONICS AND COMMUNICATION ENGINEERING)

SUBMITTED BY

BALAJI S

SRI RAMA PRASANNA P

THEJAVOR HARALU KHEZHIE

GUIDED BY

2002 - 2003 MRS. C. VASANTHANAYAKI M . E.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

GOVERNMENT COLLEGE OF TECHNOLOGY

COIMBATORE - 641 013

 2

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

 GOVERNMENT COLLEGE OF TECHNOLOGY

COIMBATORE – 641 013

BONAFIDE CERTIFICATE

This is to certify that the project titled

“Destination Address Interpretation For Automating The Sorting

Process Of Indian Postal System”

Submitted by

 NAME Reg. No.

 BALAJI S 9914103

 SRI RAMA PRASANNA P 9914143

 THEJAVOR HARALU KHEZHIE 9914150

in partial fulfilment of the requirements for the award of the degree of

Bachelor of Engineering in Electronics and Communication is a bonafide record of

the work done by them during the year 2002-2003.

 ………………………….

Place : Coimbatore Guide

Date : (Mrs. C. VASANTHANAYAKI)

Submitted for the project viva-voce examination held on ________________

Internal Examiner External Examiner

 3

ACKNOWLEDGEMENT

We wish to thank our honourable Principal Dr. S. Arumugam who has been a

constant source of encouragement for all the students.

We sincerely express our deep sense of gratitude and profound thanks to our Head

of the Department, Prof. V. Lakshmi Prabha for the unflinching interest she has shown in

our success.

With immense pleasure, we express our heartfelt thanks to our beloved guide,

Mrs. C. Vasanthanayaki, for her constant encouragement, expert guidance, creative

criticisms and timely help to successfully complete this project.

Finally, we wish to extend our thanks to Mr. K.D. Vishwanathan, Retd.

Postmaster, Mr. Chinnadurai, PMG’s Office, R.S. Puram and the staff and students of

National Institute of Technology Surathkal, Thiagarajar college of engineering Madurai

and Govt. College of Engineering Salem for encouraging us with their valuable

suggestions.

 4

SYNOPSIS

While most of the Indian industries are in the process of automation, it is a bitter

fact that the Indian Postal System is still using manual intervention for its mail sorting

and processing. In this project, we intend to propose an Automated Postal System which

would reduce the mail sorting time besides ruling out human errors. The Automatic Mail

Processor, which we have designed, scans a mail and interprets the imperative fields of

the destination address such as the Pin Code, City name, Locality name and the Street

name. The interpreted address is subsequently converted into a Delivery Point Code,

which is a 12 digit number. The Delivery Point Code is printed on to the mail in the form

of a barcode which can be read by a low-cost machine. By converting the destination

address into a barcode (which is printed on the mail), all of the future sorting processes

can be accomplished by using a mechanical machine sorter, that can sort the mails

according to the barcode present on them.

The AMP comprises of five modules namely Pre-Processing unit, Address Block

Location unit, Line and Word separation Unit, Address Parsing and Recognition Unit and

Delivery Point Code generation unit. The Address Parser detects the location of the fields

by using a heuristic procedure. The recognition system is accomplished by representing

the characters in the form of chain codes, and by using their Fourier Descriptors for

alphanumeric matching with the aid of a Neural Network. The Delivery Point Code is

then generated by using the Pin Code (6 digits) and the Street Code. A database is used in

this step to assign 5 digit codes for street names. The DPC is then bar-coded and printed

on to the mail.

 5

CCOONNTTEENNTTSS

CHAPTER 1 Introduction 1

 1.1 Implementation Considerations

 1.2 The Chapters Ahead

CHAPTER 2 Automatic Mail Processor 3

2.1 Modules of AMP

2.2 Block Diagram

CHAPTER 3 Pre – Processing 6

 3.1 Digitization

 3.2 Binarization

CHAPTER 4 Address Block Location 8

 4.1 Redundancy Correction (RC) Algorithm

 4.2 Flowchart of RC algorithm

 4.3 Implementation of RC Algorithm

CHAPTER 5 Line and Word Separation 13

 5.1 Line Separation Logic and Constraints

5.2 Horizontal Scanning (HS) Algorithm

5.3 Word Separation Logic

 5.4 Vertical Scanning (VS) Algorithm

 5.5 Flowcharts for HS and VS Algorithms

CHAPTER 6 Address Parsing and Recognition 19

 6.1 Character Separation

 6.2 Recognition of Characters and Numbers

 6.3 Pre-Processing the Character image

 6.4 Contour Detection

 6

 6.5 Chaincoding

 6.6 DFT Components

 6.7 Neural Network for Character Matching

 6.8 A Final Note on Address Parsing and Recognition

CHAPTER 7 Delivery Point Code Generation 34

7.1 Control Digit Combinations

7.2 Real-Time Implementation

7.3 Universal Networking and

 Hierarchical Routing

CHAPTER 8 Bar-Coding 38

 Implementation Results 41

 Conclusion and Future Enhancements 49

 Appendix (MATLAB Codes) 50

 References 104

 7

LIST OF FIGURES

Figure 1 : Block diagram

Figure 2 : Digitized image

Figure 3 : De-noised and Binarized image

Figure 4 : RC Algorithm

Figure 5 : Low Pass filtered image

Figure 6 : Re-binarized image

Figure 7 : Redundancy Corrected image

Figure 8 : Extracted Address

Figure 9 : Line separation

Figure 10: Underline Removal

Figure 11: A line of the extracted address

Figure 12: a) Horizontal Scanning

Figure 12: b) Vertical Scanning

Figure 13: Word Separation

Figure 14: Character Separation

Figure 15: Contour Detection

Figure 16: Chain Coding

Figure 17: Chain Coding Logic

Figure 18: The Back Propagation Neural Network

Figure 19: 177 Character Patterns Used for Matching

Figure 20: 20 Components for the Character ‘a’

Figure 21: Neural Network Output

Figure 22: Delivery Point Code Format

Figure 23: An Address Format

Figure 24: Barcode Format

Figure 25: Barcode for DPC = 641013000001

Figure 26: Universal Networking Method

Figure 27: Hierarchical Routing Method

Figure 28: Inland Letter and Post Card Samples

Figure 29: Front End demonstration of the implementation in MATLAB

 8

Figure 30: Lowpass Filtering Output

Figure 31: Re-Binarization Output

Figure 32: Redundancy Correction Output

Figure 33: Address Block Location Output

Figure 34: Underline Removal Output

Figure 35: Line Separation Output

Figure 36: Word Separation output

Figure 37: Character Separation output

Figure 38: Recognition Output

Figure 39: Database Creation Output

Figure 40: Samples Used for Testing

Figure 41: DPC and Barcoding Output

LIST OF TABLES

Table 1: CTRL combinations

 9

1. Introduction

 The Indian Postal System (IPS) is one among the few public sector units which

deserve to be fully automated. The time taken for a mail delivery can be viewed as the

sum of the transit time and processing time. The transit time is something which is

inevitable. But, the processing time, which includes the time for mail address

interpretation and sorting, can be reduced to a great deal if the sorting process is

automated. Consider a mail that is posted from Coimbatore to Shimla. The existing postal

system involves human intervention in the processing of this mail at least four times:

Coimbatore, Chennai, Delhi and Shimla. At each of these points, a human reads the mail

and manually interprets it before sorting it according to its destination address. This

process of mail sorting is highly time consuming besides being error prone. In this project

we intend to propose an Automatic Mail Processor (AMP) which scans and interprets the

destination address and converts it into a Delivery Point Code, which is printed on the

mail in the form of a bar-code. Now that the destination address is in the form of a

barcode, it can be interpreted by using a low-cost barcode reader for future sorting

processes.

1.1 Implementation Considerations

 The Automatic Mail Processor (AMP) is designed to be compatible with all kinds

of mails such as Inland letters, Post Cards, Post Covers, and Envelopes etc. The job of

AMP is simplified in the first three cases due to the presence of predefined address

locations. In the case of an Envelope, there is an additional work of locating the position

of the destination address. Let us consider such an Envelope with NO predefined grids as

 10

an example. All the stages in this project are described with Envelope as an instance. The

same can be implemented with much ease for all other types of mails due to their inherent

simplicities.

 It should also be ensured that sufficient space is provided in each mail for printing

the bar-code. Though space would not be a constraint in large Envelopes, sufficient care

has to be taken in the case of small Post Cards and Covers.

1.2 The Chapters Ahead

 Chapter 2 gives the various modules of the Automatic Mail Processor along with

the general block diagram. Chapter 3 discusses the Pre-Processing stages performed on

the scanned mail before going on to further modules. Chapter 4 concentrates on the

Address Block Location module and explains the various steps taken to locate the

destination address.

 The destination address is extracted and further divided into lines and words as

explained in Chapter 5. Chapter 6 explains the way in which the words are separated into

characters and also the recognition process undertaken in this project. The process of

generating the Delivery Point Code is explained in Chapter 7 and the Chapter 8 describes

the procedure of converting the Delivery Point Code into a Barcode.

 11

2. Automatic Mail Processor

2.1 Modules of AMP

 The five main modules of Automatic Mail Processor (AMP) are

1. Pre-Processing unit

a) Digitization

b) De-noising

c) Binarization

2. Address Block Location (ABL) unit

a) Image Averaging

b) Binarization

c) Redundancy Correction (RC)

d) Address Extraction

3. Line and Word Separation unit

a) Horizontal Scanning (HS)

b) Vertical Scanning (VS)

4. Address Parsing and Recognition unit

a) Parser – Field Identification

b) Pin Code Recognition

c) City, Locality Recognition

d) Consistency Checker

e) Street Recognition

5. Delivery Point Code (DPC) generation unit

a) Add-On search

b) DPC creation

c) Bar-Coding

 12

2.2 Block Diagram

Figure 1: Block Diagram

 13

 The Block Diagram of AMP begins with a Pre-Processing unit which comprises

of two stages namely Digitization and Binarization. Denoising can be considered to be a

part of the Digitization stage. The Address Block Location module determines the

location of destination address in the mail. The Line and Word separation units divide the

extracted address into constituent lines and words by employing Horizontal and Vertical

Scanning algorithms.

 The Address Parsing and Recognition module parses and recognizes the

imperative fields of the destination address. From the recognized fields, the Delivery

Point Code (DPC) is generated by the DPC unit. The DPC is subsequently converted into

a barcode that will be printed on the mail.

 14

3. Pre-Processing

3.1 Digitization

 The first step of AMP is to obtain a digitized image of the Envelope. Digitization

is performed by scanning the Envelope with a high-resolution scanner to produce an 8-bit

gray scaled image as shown below.

Figure 2: Digitized image

3.2 Binarization

The digitized image usually contains certain noisy spurious pixels which can be

removed by de-noising the image. The image de-noising is performed by subjecting the

image to an averaging filter.

The mask is suitably set so as not to blur the image. A 3 X 3 mask would be

sufficient to remove the discrete spurious noisy pixels from the scanned image of the

mail. Median filtering may also be employed for this purpose.

 15

Every pixel of the averaged image is represented by 8-bits. But, for interpreting

the destination address, a binary image with two colours is sufficient.

Figure 3: De-noised and Binarized image

Therefore, the averaged image is binarized by setting a threshold level, which is

determined adaptively depending on the foreground and background colours. The

binarized image is shown in Figure 3.

 16

4. Address Block Location

 The location of the destination address in an envelope is not pre-determined. This

necessitates the need for an Address Block Location module (ABL). The ABL takes the

binarized image from the preprocessor and determines the position of the destination

address in the envelope. In other words, the ABL returns the coordinates of a rectangle

with least area that can be drawn around the destination address after leaving a tolerance

level. As the ABL distorts the original image while processing, a backup of the original

image is stored for future retrieval.

 The logic behind the working of ABL is the Redundancy Correction (RC)

algorithm. The algorithm functions in such a way as to remove the explicit redundancies

in the image such as the sender’s address and stamp impressions. The steps of this

algorithm are illustrated below.

4.1 Redundancy Correction (RC) Algorithm:

1. Obtain the image from preprocessing unit

2. Low pass filter the image using a 20 X 20 spatial mask using point processing

techniques.

3. As the low-pass filtered image is a non-binary image, re-binarize it by setting a

high threshold value.

4. The Re-Binarization would cause the fields on the envelope to form black

patches.

 17

5. As the redundant information such as the sender’s address and the stamp

impressions are usually present only in the corner of an envelope, they can be

removed by scanning through the image.

6. The resultant image now has a white back ground with back patches only in the

destination address.

7. After leaving a tolerance, a rectangle is suitably positioned over the destination

address patch and its coordinates are returned.

4.2 Flowchart of RC algorithm:

Figure 4: RC Algorithm

 18

4.3 Implementation of RC Algorithm

The original image in Figure 3 is Low Pass Filtered using a 20 x 20 mask spatial

mask. The spatial mask is nothing but a matrix with 20 rows and 20 columns with all of

its elements set to 1. A 20 x 20 mask is chosen as it provides sufficient blurring effect

which can be converted into patches by re-binarization. The Low Pass Filtering is

accomplished by rolling the 20 x 20 mask through each pixel of the original image and

determining its response. The value of the pixel is subsequently transformed into the

response value.

R = 0.0025 * (x1 + x2 + x3 + x4……………………………. + x17 + x18 + x19 + x20)

The equation for computing the response by point processing is given above. In this

equation x1, x2… x20 represent the value of the pixels of the original image over which

the 20 x 20 spatial mask is placed.

Figure 5: Low Pass Filtered image

 19

 It can be clearly observed from the image that the Low Pass Filtering has blurred

it sufficiently for patch formation. Another important point to be noted here is that the

size of Figure-5 is around eight times the size of Figure-3 as 8 bits are required

representing each pixel of Figure-5.

The next step is to re-binarize the Low Pass Filtered image (Figure 5) to obtain an

image with patches. The degree of patch formation can be adjusted by varying the

threshold level during binarization.

Figure 6: Re-Binarized image

 In our application, it is desirable to form continuous patches so that all the

words are joined together. Consequently, a high threshold value of the order of (0.8 to

1.0) is set during binarization .The above Binary image (Figure 6) is obtained by using a

threshold of 1.0

 20

The Redundancy Corrected image (Figure 7) is obtained from Figure 6 by

removing the unwanted information in the corners and boundaries of the image. As it is

conventional that the Destination address is written somewhere in the centre and certainly

not in the corners, such logic has been employed.

Figure 7: Redundancy Corrected image

After redundancy correction, the image is left only with the patches of the

destination address. By horizontal scanning from the first pixel row, the location of the

Destination address can be accurately identified. A tolerance level is adopted and a

rectangle is drawn over the destination address. The coordinates of this rectangle is

returned to the Line and Word Separation module.

 21

5. Line and Word Separation

 As stated earlier a copy of the original image (Figure 3) is stored separately as the

ABL module distorts the image given to it. The Coordinates returned by the ABL

module is used to extract the destination address from the saved copy of Figure 3. The

extracted destination address is shown below.

Figure 8: Extracted Address

5.1 Line Separation Logic and Constraints

The line separation procedure consists of scanning the image (Figure 8) row by

row. The row in the preceding line represents the pixel row and not the lines of the

address. The simplest way of separating the lines is to set a threshold value for the

number of white pixel rows between two address lines. Two lines are separated if the

number of white pixel rows between them is greater than the threshold value.

Such a logic would be futile when letters such as ‘y’,’g’ etc occur in the first line

and letters like ‘f’,’d’, etc occur in the second line without having white pixel rows in-

between. Such a bottle neck can be averted by designing the algorithm in such a way that

 22

it is tolerant to a certain minimum number of black pixels in a white row. In other words,

a row with very few black pixels can be considered as a white pixel row. Such an

algorithm will be fault tolerant.

Figure 9: Line separation.

5.2 Underline Removal Technique

In many cases, the words in handwritten addresses are written on printed guide

lines that are provided to assist the writer. Often handwritten text intersects these guide

lines. The Underline removal algorithm designed ensures that the underlines are removed

without tampering the image. It scans through the image horizontally and detects the

presence of continuous lines.

Figure 10: Underline Removal

While removing the lines, it takes into consideration the presence of black pixels

in the row, above the row taken into consideration. If there happens to be a black pixel,

 23

then the current pixel is not converted into white and if there is no black pixel in the

previous row then the current black pixel is converted into white. Thus the destination

address is not affected much by removing the underlines.

5.3 Horizontal Scanning Algorithm

The Horizontal scanning algorithm that is used for line separation is described below.

1. Scan the extracted image (Figure 8) pixel-row by pixel-row

2. Set a threshold value for the minimum number of white pixel rows to be present

between two address lines.

3. A predefined amount of tolerance is provided while deciding whether a pixel-row

is a white pixel-row for avoiding ‘y’ – ‘f’ problem.

4. Count the number of consecutive white pixel rows.

5. If the number of white pixel rows is greater than the threshold, then separate the

two address lines.

6. Repeat steps 4 and 5 until all the address lines have been separated.

5.4 Word Separation Logic

The word separation is performed analogous to the line separation. But, instead of

horizontal scanning, vertical scanning is employed here.

Figure 11: A line of the extracted address

 24

It is very important to set a proper threshold value for horizontal and vertical

scanning methods. An optimum threshold value is decided only after performing a

statistical analysis of human handwriting.

5.5 Vertical Scanning Algorithm

The vertical scanning algorithm is described below.

1. Scan the extracted line (Figure 11) column by column.

2. Set a threshold value for the minimum number of white pixel columns to be

present between two words.

3. Count the number of consecutive white pixel columns.

4. If the number of white pixel columns is greater than the threshold, then separate

the two words.

5. Repeat steps 3 and 4 until all the words have been separated.

5.6 Flow Charts for Horizontal and Vertical Scanning

The Flowchart given for the line separation using horizontal scanning algorithm

will work perfectly only when the address is written in a horizontal manner. The line

separation technique adopted for non-horizontal addresses is described later in this

section.

The tolerance value EL has to be set for avoiding high precision errors. In other

words, while scanning a horizontal pixel row, a white row need not mean that all the

pixels in it are white. A maximum of EL number of pixels can be black in colour. By

 25

using such a tolerance, even if few characters of two address rows cross a same pixel

row, line separation algorithm would work efficiently.

Figure 12: a) Horizontal Scanning b) Vertical Scanning

 26

The VS algorithm separates the words of Figure 11 as illustrated below.

Figure 13: Word Separation

 It has to be carefully noted that even the unwanted fields such as ‘,’ and ‘-’ are

considered as separate words by the VS algorithm and they are also sent to the address

parsing and recognition module where they are detected and removed.

If the destination address is written in a non-horizontal manner, then the address

lines must be made horizontal by rotation before the horizontal scanning is performed.

Yet another method for tackling this problem is to undertake a sloped scanning method.

The slope of scanning should be equal to the slope with which the address line has been

written.

 27

6. Address Parsing and Recognition

 The input to APR is the series of words of Figure 13 and the objective of APR is

to parse and recognize these word ‘images’. Address parsing is nothing but identifying

the Pin Code, City, Locality etc from the word ‘images’ that are provided to APR. This is

done partly on the basis of convention and partly on the type of the strings. For instance,

if the word image happens to be a 6-digit number, and then there is a high possibility for

it to be the Pin Code.

Conventionally, the name of the City and Pin Code is written only in the last line

of the address. Though the above cases may not be strictly followed, it would be

beneficial in terms of speed of processing to make such wise assumptions. If a particular

mail does not follow conventions, then the APR is forced to interpret and identify (parse)

each field before recognition. The address parsing commences from the bottom most line

of the destination address. The words of the bottom most lines are recognized and are

compared with databases of countries, States of India, Districts in India and Localities.

As such a system is employed; the parsing won’t fail even if additional details like Name

of the State are written in the destination address.

6.1 Character Separation

 Before sending the word images directly to recognition unit, they should be split

up into component characters or digits. The basic idea here is to identify the individual

characters and ligatures.

 28

Ligatures are the small horizontal lines which connect two characters in a word. A

ligature can also be vertical/slanted as in the case of a transition from ‘g’ to ‘f’. The

division of a word without ligatures can be done easily by detecting the blank white

columns between two characters. A word with ligatures can be divided by carefully

specifying the ‘cut’ points at the two ends of ligatures.

Figure 14: Character Separation

 The above figure shows how the word image “Chennai” is separated into

characters and ligatures. Statistics of hand-written recognition claims that ligatures are

 29

invariably straight lines with constant slope. For general alpha-numeric recognition

algorithms, it would be beneficial to consider ligatures as lines between two steep risings.

Such a system is adopted by the APR to detect lines with fewer slopes (tan) that are

between two steep curves and these entities are removed. The characters are individually

separated and they are passed to the recognition unit as shown in Figure 14(c).

6.2 Recognition of Characters and Numbers

The recognition unit uses 4 connectivity for back-ground and 8 connectivity for fore-

ground. The key steps to be performed in recognition are enumerated below.

1. Normalizing the character image.

2. Boundary detection.

3. Extracting the chain code of the boundary.

4. DFT Computation

5. Feeding the DFT components into a trained Neural Network

6. Identifying the Character on the basis of the best match.

6.3 Pre-Processing the Character image

For Fault-Tolerant character recognition, it is imperative to avoid the size effects of

the character images. Similarly, slant correction should also be undertaken to straighten

up the characters. The slant correction is performed by measuring the average slant angle

of the characters of the word and by tilting the character image in opposite direction

 30

through the same angle. The slant corrected character image is normalized to size of 128

x 128 Sq pixels.

6.4 Contour Detection

The boundary detection is one in which the contours of the character image are

detected. Any standard edge detection algorithm can be used for this purpose. But for the

sake of accuracy, contour detection by point processing is undertaken. The detection

logic is described below.

Figure 15: Contour Detection

Consider a character image with a black background and a white fore ground. The

detection procedure encompasses a horizontal scanning technique. Every pixel of the

character image is scanned horizontally. If the pixel under consideration is white, then the

colours of its four connected pixels are taken into account.

 31

If all of the four connected pixels are white, then the pixel under consideration is not

a part of the contour. On the other hand, even if one of the four connected pixels are not

white, then it can be concluded that the pixel under consideration is a part of the contour.

6.5 Chain Coding

The next step of Recognition unit is to extract the chain codes from the boundary of

character image. Chain coding of outer contour alone is enough for recognizing alpha

numeric characters with reasonably high degree of precision. While traversing through

the outer contour, care is taken so as to avert the influence of noise. If a loop is formed

due to noise, the algorithm turns backward and proceeds until a correct path is found. In

Figure16 chain coding of the character ‘C’ is illustrated. It can be observed that chain

codes are recursive in nature as the outer contour is itself a loop. The tracing ends when

the initial point is reached again. Similarly, chain codes for all the other characters can be

formed. A single character can have numerous 8-directional chain codes depending on its

starting point. Conventionally, the chain code with the least magnitude is taken into

consideration.

The Figure 16 shows the boundary detection of ‘C’ and the 8 – directional chain code

convention. The starting point for determining the chaincode can be in any part of the

outer contour. For the sake of simplicity, the starting point is considered to be the

topmost pixel in the contour. Then, by proceeding in the counter clockwise direction, the

direction of the next pixel in the contour is determined. The directivity determination is

implemented as a series of eight functions in Matlab, as eight directional chaincode is

 32

used. The following paragraph explains how exactly the direction of traversal is

determined.

The starting point of the contour is determined as the topmost pixel in the contour.

The topmost pixel can be identified by performing a horizontal scanning from the first

row. As it has been already stated that the chaincoding has to proceed in a counter

clockwise direction, there are only two directions in which the chain coding can proceed

after the first pixel.

Figure 16: Chain Coding

This concept can be better understood by observing the Figure 17. The pixel

arrangement is shown in Figure 17(a). The pixel ‘P’ represents the pixel under

consideration. As it can be seen, there are eight pixels surrounding it. Coming back as to

 33

why there are only two directions for the chaincode to proceed, it has to be noted that

when pixel ‘P’ is under consideration, the pixels 1, 2, 3 and 4 would have already been

scanned. As we are proceeding in the counter clockwise direction, we cannot consider

pixel 5. A careful analysis of Figure 17 with all the character contours would reveal that

there is no way what pixel 8 can be white when ‘P’ is the starting pixel. So, we are now

left with only two pixels 6 and 7. From Figure 16, there directivities can be found to be 5

and 4 respectively. By explicitly proceeding in the directions 4 or 5, the next pixel in the

contour can be identified.

Figure 17: Chaincoding Logic

 The coordinates of the starting pixel and the next pixel in the contour form the

first two rows of the chaincode matrix with ‘n’ rows and 2 columns. The number ‘n’

denotes the number of pixels in the contour. Unlike the case for the second pixel in the

contour, for all other pixels, there are five directions in which the chaincode can proceed.

 In Figure 17(b) consider that the pixel 6 is white which implies that the chaincode

moves in direction 5. The Figure 17(c) has been structured assuming such a possibility.

The old pixel numbers are depicted within brackets. The pixel 3 in Figure 17(c) is the

 34

pixel ‘P’ in Figure 17(b). So, In Figure 17(c) it can be rightly said that the chaincoding

has proceeded from pixel 3 to pixel ‘P’.

 Now, to determine the next pixel direction in the chaincode, it is enough if we

scan through five pixels namely 1, 4, 6, 7, 8 as shown in Figure 17(c). It is only in these

directions the chaincoding can advance. The other three pixels 2, 3 and 5 need not be

taken into account as the chaincode came to pixel ‘P’ from 3.

 Similarly, for all other directions also, it is sufficient to consider only 5 pixels

instead of 8. This chaincoding proceeds until the starting pixel is reached after making a

full traversal through the outer contour. After detecting every successive pixel in the

contour, its coordinates have to be appended to the chaincode matrix.

6.6 DFT Components

The Fourier descriptors (FDs) of the character are computed by applying DFT on the

chain code points. DFT is applied in such a way that the x-coordinate x(k) of the chain

code is considered as the real part and the y-coordinate y(k) is considered as the

imaginary part.

S(k) = x(k) + jy(k)

 35

The complex coefficients a(u) for u = 0, 1, 2, 3, 4, 5,… are called the Fourier descriptors

of the boundary. The number of DFT components obtained depends on the size of the

contour (i.e.) the number of pixels in the contour.

For identifying a character, all the DFT components are not required. A

satisfactory description can be obtained by choosing few lower frequency and few higher

frequency components. Larger the number of components considered, higher is the

accuracy. But, as the number of components considered increases, computational

complexity is observed. So, a tradeoff has to be made between accuracy and complexity

while choosing the number of DFT components considered for recognition. In this

project, 10 low frequency components and 10 high frequency components are considered

for each character. To summarize, every character will be represented by a set of 20 DFT

components.

6.7 Neural Network for Character Matching

Before character matching can be performed, matching tables containing the

Fourier descriptors of all the alpha-numeric characters are drafted. A Back Propagation

Neural Network is used for identifying the input character pattern.

The BPN learns a predefined set of input-output example pairs by using a two

phase propagate-adapt cycle. After an input pattern has been applied as a stimulus to the

first layer of network units, it is propagated through each upper layer until an output is

generated. This output pattern is then compared to the desired output, and an error is

computed for each output unit.

 36

The error signals are then transmitted backward from the output layer to each

node in the intermediate layer that contributes directly to the output. However, each unit

in the intermediate layer receives only a portion of the total error signal, based roughly on

the relative contribution the unit made to the original output.

Figure 18: The Back Propagation Neural Network

This process repeats, layer by layer, until each node in the network has received

an error signal that describes the relative contribution to the total error. Based on the error

signal received, connection weights are then updated by each unit to cause the network to

converge toward a state that allows all the training patterns to be encoded.

The significance of this process is that, as the network trains, the nodes in the

intermediate layers organize themselves such that different nodes learn to recognize

different features of the total input space. After training, when presented with an arbitrary

input pattern that is noisy or incomplete, the units in the hidden layers of the network will

 37

Figure 19: 177 Character Patterns used for training

 38

respond with an active output if the new input contains a pattern that resembles the

feature individual units learned to recognize during training.

The neural network is trained with 177 character patterns shown in Figure 19. The

177 character patterns are formed by selecting all the different forms of representing the

26 alphabets and 10 numbers. The structural configuration of the neural network used and

the complexities involved are discussed in the following lines.

Figure 20: 20 complex components for the character ‘a’

The inputs to be fed to the Neural Network are DFT components which are

complex numbers. As, it is not possible to feed a complex quantity directly to an input

node, the complex DFT components have to be resolved further into Polar or Rectangular

form. The Rectangular form of representing each complex component by its real and

imaginary part is used in this project. If Polar form is used, each complex number is

 39

represented in terms of its magnitude and angle. In both of these two cases, there is a

need to represent a complex component by two entities. As 20 complex components are

used for representing each character, the total number of input nodes required turns out to

be 40. As 177 character patterns are used, the number of output nodes is obviously equal

to 177.

Figure 21: Neural Network Output

Deciding on the number of hidden layers and number of nodes in each layer is a

very significant issue. As the number of hidden nodes is increased, the accuracy of the

recognition system is found to increase considerably. It is imperative to note that the size

 40

of the neural network used increases as the number of hidden nodes are increased which

would prevent the recognition system from being time efficient in low memory systems.

An adaptive learning rate gradient descent training function (traingdx) is used to

train the network. The speciality of this training function is that the learning rate can be

adaptively varied as the training progresses. In other words if the training is proceeding in

the required direction then the learning rate gets increased and vice versa. Once the

network is fully trained, it can be instantly used for recognition.

The input character to be recognized is sent to the recognition module. The

character’s contour is determined before forming the chaincode matrix. It may be

recollected that the chaincode matrix comprises of the coordinates of the pixels in the

contour. The 20 DFT Components are computed and the components are divided into real

and imaginary parts so that 40 entities are obtained. This vector containing 40 entries is

fed into the trained neural network. The output of the neural network is a vector with 177

entries.

By carefully analyzing the output vector, it can be seen that only one entry clearly

dominates others in terms of its value. This node is said to be the winner and the

character corresponding to the winning node is returned as the output of the character

recognition module.

 41

6.8 A Final Note on Address Parsing and Recognition

Once a character is recognized, it is appended with the previously recognized

character of the word. Thus, the destination address has now been converted into system

interpretable words. As the fields of the words have already been identified by address

parsing, the next step is to check if all the information provided by these fields are

concurrent with each other. The concurrency checker module plays a major role in fool-

proof address interpretation. The objective of the concurrency checker module is to check

if the Pincode, City, Locality, District and state are concurrent with each other. By

making such a check, an address can be interpreted even if it contains some explicit

spelling mistakes. Further, such a module is highly helpful when the destination address

does not contain certain imperative fields for DPC generation such as the Pincode.

The database that is created should be resilient to the different forms of

representing the name of a City or Place. For instance, Coimbatore can be written also as

CBE and Kovai. So, the database also contains the different forms of an entry in addition

to the predominantly used form.

 42

7. Delivery Point Code (DPC) Generation:

 The DPC is a 12 digit code which comprises of

1. A 6 digit Pin Code.

2. A Control Digit.

3. A 5 digit Add-On.

 Figure 22: Delivery Point Code Format

 In majority of the cases, the Add-On refers to the street code assigned. In special

cases, such as the one shown in Figure 23, there is no street name in the address. Instead

a field called PO BOX number is included. In this case, the add-on will be this PO BOX

number.

7.1 Control Digit Combinations

The control digit (Digit 7 of DPC) is used to differentiate between street code and

PO Box code. CTRL is also used to specify any error conditions. The various digit

combinations of CTRL are enumerated in Table 1.

 43

CTRL Function

0 Add-On represents Street code

1 Add-On represents PO BOX number

2 Error: Unable to determine Add-On

3 to 9 Expansion Slots

Table 1: CTRL combinations

Figure 23: An Address format

7.2 Real Time Implementation

Two databases should be employed by the Automatic Mail Processor (AMP). One

is the database containing all the pin codes and their corresponding locations. This

database is absolutely essential in cases where pin codes are not / partly specified in the

destination address. Even if the Pin Code is specified, this database would be used by the

Concurrency checker module of APR to check if the Pin Code is concurrent with the city

 44

and locality. The second database contains the Street names of the particular City (where

the AMP is located) and the corresponding street codes.

 It must be noted that the AMP is not required at every post office in India. The

idea is to assign a head post office for a particular city/region and send all the outgoing

mails there. The head post office which is equipped with AMPs, converts the destination

address into barcodes which are printed on to the mail. Every post office is provided with

a low-cost barcode reader for automated sorting. Hence, AMPs are located only in head

post offices while barcode readers are present in all post offices. This would prove that

the system is highly efficient besides being cost effective.

7.3 Universal Networking and Hierarchical Routing

There are primarily two different ways for DPC assignment using AMP.

1. Universal Networking method

2. Hierarchical Routing method

In both of the above methods, the first database having all the Pin Codes and the

second database with Street Codes are present in all the head post offices. A particular

head post office will have the street codes pertaining to its limits ONLY.

 In the Universal Networking method, all the head post offices (HPO) are

networked with high speed leased lines. The AMP of a particular HPO

recognizes/determines the pin code of a mail (with its own first database). Now, to

determine the street code, it uses the universal network to communicate with the

 45

destination HPO. Thus the entire DPC is generated in the source HPO and the barcode for

12 DPC digits is printed on the mail. Unlike Universal networking method, in

hierarchical routing, only the Pin Code is bar-coded in the source HPO. As the pin code is

bar coded, automated sorting is possible until it reaches the destination HPO. In the

destination HPO, the Street name is recognized (by another AMP) and the street code is

assigned. Thus there is no network between the HPOs.

 The advantage of Universal networking method is that every mail is processed by

only one AMP. The disadvantage is that a high-cost network is required for its operation.

While the hierarchical routing is advantageous as it avoids the use of a network, it uses

two AMPs (one is source HPO and another one in destination HPO) for its operation. The

need for including the street code in the DPC is to further sort down the mails in the

destination post office according to the each post man’s coverage area.

 In both of the above methods, as the Pin Code is bar coded right in the source

HPO, in all further transits, automated sorting is made possible. The process of sorting

requires only a barcode reader and NOT an AMP. Thus, the need for the presence of high

cost equipment at every post office is averted.

 46

8. Bar-Coding

 The objective of this module is to dynamically generate a barcode corresponding

to the Delivery Point Code (DPC) provided to it. As the range of digits in DPC lie

between 0 and 9, four bits would suffice to represent each digit. The barcode format for

each of the 10 numbers is illustrated in Figure 24.

Figure 24: Barcode Format

Figure 25: Barcode for DPC = 641013000001

 Figure 25 shows the output of the bar coding module when the DPC given to it is

641013000001. Once, the barcode image pattern is created, the next step is to print it on

the Envelope.

 47

The final bar coded Envelope at SOURCE HPO for both cases (Universal

Networking and Hierarchical Routing) is shown below.

Figure 26: Universal Networking method.

Figure 27: Hierarchical Routing method

 48

The same procedure can be adopted for all other kinds of letters such as the Inland

letter, Post card, Post cover etc. As explained before in the case of Inland letters and

postal covers, the processing becomes very simple due to the location of predefined

spaces to write the destination address. There is no role for the Address Block Location

module in such cases.

Figure 28: Inland letter and Postcard Samples

 49

Implementation Results

The Figure 29 shows the front end of the implementation in MATLAB. This front

end encompasses all the significant steps of our project. The different stages can be

executed by clicking the corresponding push-buttons provided in the sides.

Figure 29: Front End demonstration of the implementation in MATLAB

 A Browser has been provided for the recognition module. The input character

image to be recognized is selected from the browser list box. Finally, the DPC &

Barcoding module generates the DPC corresponding to the destination address along with

the barcode corresponding to it. The barcode is generated dynamically in accordance with

the digits of the delivery point code. The output for each module is shown in the

following pages.

 50

Output for Lowpass Filtering

Figure 30: Lowpass Filtering output

Output for Re-Binarization

Figure 31: Re-Binarization output

 51

Output for Redundancy Correction

Figure 32: Redundancy Correction Output

Outputs for Address Block Location

Figure 33: Address Block Location Output

 52

Output for Underline Removal

Figure 34: Underline Removal Output

Output for Line Separation

Figure 35: Line Separation Output

 53

Output for Word Separation

Figure 36: Word Separation output

Output for Character Separation

Figure 37: Character Separation output.

 54

Output for Character Recognition

Figure 38: Recognition Output

Output for Database Creation

Figure 39: Database Creation Output

 55

Testing

 This project was tested with the following different kind of address samples.

Figure 40: Samples Used for Testing

 56

Output for DPC and Barcoding

Figure 41: DPC and Barcoding Output

 57

Conclusion and Future Enhancements

The Automatic Mail Processor, whose design and working was explained in the

preceding pages, is practically implementable. Cost efficiency is ensured as only barcode

readers are required at sorting stations. The speed of operation would be exponentially

high when compared to manual sorting. As everything is automated, the chances for

errors in interpretation are very less. We have already discussed this project with the Post

Master General’s (PMG) office, Coimbatore and we certainly believe that this project

will revolutionize the Indian Postal System.

Though every module of this project completely serves its purpose, enhancements

can be made in the recognition process we have used. Instead of using only the outer

contour of each character, the inner contour can also be taken into consideration. If the

Back Propagation Neural network is replaced by an Adaptive network like ART, then the

training process for new samples would not be cumbersome.

We have implemented this project for the English language. But for real use, this

must be extended to other Indian languages too. The process of extending this project to

other languages is not difficult as the recognition process undertaken here is independent

of the language used. The Neural Network used in the final stage of recognition should be

trained with character patterns of other Indian languages too.

 58

MATLAB Codes

Image Denoising and Binarization

imfile = ‘c:\mail.jpg’;

I = imread (imfile);

% De-noising

H = fspecial (‘average’, 2);

AI = filter2 (H,I);

% Binarization

th = 0.5;

BI = im2bw (AI, th);

Address Block Location

% Low pass filter with 20x20 mask

h = ones (20);

LI = filter2 (h, BI);

LI = LI/400;

% Re-Binarization

BI = im2bw (LI, 1.0);

[r c] = size (BI);

fl = 0;

 59

Redundancy Correction

% Remove redundant patches in corners

I = imread ('c:\desti\rb.tif');

[r c] = size (I);

figure;

imshow (I)

for i = 1 : 30

 for j = 1:896

 k = 370-i;

 I(i,j) = 1;

 I(k,j) = 1;

 end

end

for i = 1 : 30

 for j = 1:369

 k = 897-i;

 I(j,i) = 1;

 I(j,k) = 1;

 end

end

for i=1:170

 for j =1:270

 I(i,j)=1;

 60

 I(369-i,j)=1;

 I(i,897-j) = 1;

 I(369-i,897-j)=1;

 end

end

figure;

imshow(I)

Address Block Extraction

I = imread('c:\desti\rc3.tif');

figure;

imshow(I);

[r c] = size(I);

r2=0;c2=0;r1=r;c1=c;

for i = 1:r

 for j = 1:c

 if(I(i,j)== 0)

 if(i<r1)

 r1 = i;

 end

 if(j<c1)

 c1 = j;

 end

 61

 if(i>r2)

 r2 = i;

 end

 if(j>c2)

 c2 = j;

 end

 end

 end

end

J = imcrop(I,[c1 r1 c2-c1 r2-r1]);

figure;

imshow(J);

for i = r1:r2

 for j = c1:c2

 I(i,j)=0;

 end

end

figure;

imshow(I)

P = imread('f:\fin1_bin.bmp');

E = imcrop(P,[c1 r1 c2-c1 r2-r1]);

figure;

imshow(E)

 62

Underline Removal

I = imread('g:\a.bmp');

imshow(I);

[r c] = size(I);

n=0;

for i = 2:r

fl = 1;

 for j = 1:c

 if I(i,j) == 1

 fl = 0;

 break;

 end

 end

 if fl == 1

 for k = 1:c

 if I(i-1,k) == 1

 I(i,k) = 1;

 end

 %I(i,1:end) = 1;

 %n = n+1;

 end

 end

end

 63

figure;

imshow(I)

%n = n+1;

%n = n/3

%for i = 1:c

% for j = n+1:r-n

% if I(j,i) == 1

% if I(j-n,i) == 0

% if I(j+n,i) == 0

% I(j,i) = 0;

% end

% end

% end

%end

%end

%figure;

%imshow(I)

Line and Word separation

 I = imread('c:\desti\rc4.tif');

figure;

imshow(I);

[r c] = size(I);

 64

n=0;m=1;n=1;

for i = 1:r

 fl = 0;

 for j = 1:c

 if(I(i,j)==0)

 fl =1;

 end

 end

 if(fl==0)

 n = n+1;

 if(n>20)

 r4(m)= i;

 m = m+1;

 n=0;

 end

 end

end

I1 = imcrop(I,[1 1 305 r4(1)]);

I2 = imcrop(I,[1 r4(1) 305 r4(2)-r4(1)]);

I3 = imcrop(I,[1 r4(2) 305 146-r4(2)]);

figure;

imshow(I1);figure;

imshow(I2);figure;

 65

imshow(I3);

% Word Separation

I = imread('c:\desti\ls.tif');

figure;imshow(I);

[r c] = size(I);

n = 0;m = 1;

for j = 1:c

 fl = 0;

 for i = 1:r

 if(I(i,j)==0)

 fl = 1;

 end

 end

 if(fl==0)

 n = n+1;

 if(n>21)

 c4(m)=j;

 n=0;

 m = m+1;

 end

 end

end

m = m-1;

 66

figure;

imshow(imcrop(I,[1,1,c4(1),r]));

for i = 2:m

 figure;imshow(imcrop(I,[c4(i-1),1,c4(i)-c4(i-1),r]));

end

figure;

imshow(imcrop(I,[c4(m),1,c-c4(m),r]));

Character Separation

I = imread('c:\desti\ws1.tif');

figure;imshow(I);

[r c] = size(I);

n = 0;m = 1;rr=1;

for j = 1:c

 fl = 0;

 for i = 1:r

 if(I(i,j)==0)

 fl = fl+1;

 rr = i;

 end

 end

 if(fl<7)

 n = n+1;

 67

 if(n>1)

 if(rr>70)

 c4(m)=j;

 n=0;

 m = m+1;

 end

 end

 end

end

m = m-1;

figure;

imshow(imcrop(I,[1,1,c4(1),r]));

for i = 2:m

 figure;imshow(imcrop(I,[c4(i-1),1,c4(i)-c4(i-1),r]));

end

figure;

imshow(imcrop(I,[c4(m),1,c-c4(m),r]));

Character Recognition

Chain coding and DFT Representation of Samples

imfile='f:\fin\zn73.bmp';

tmp=imread(imfile);

tmp=imresize(tmp,[128,128]);

 68

sub_im=zeros(size(tmp)+[2 2]);

sub_im(2:end-1,2:end-1)=tmp;

SE=ones(3,3);

sub_im=erode(sub_im,SE);

sub_im=double(dilate(sub_im,SE));

ct_im=zeros(size(sub_im));

for m=2:size(sub_im,1)-1

for n=2:size(sub_im,2)-1

if sub_im(m,n)==1

tmp=sub_im(m-1,n)+sub_im(m+1,n)+sub_im(m,n-1)+sub_im(m,n+1);

if tmp~=4

ct_im(m,n)=1;

end

end

end

end

figure;

imshow(ct_im);

im = ct_im;

[r c] = size(im);

fl = 0;

% To determine starting pixel (r1,c1)

for i = 1:r

 69

 for ii = 1:c

 if im(i,ii) == 1

 r1 = i;

 c1 = ii;

 fl = 1;

 break;

 end

 end

 if fl ==1

 break;

 end

end

cc(1,1:2) = [r1,c1];

fr = r1;

fc = c1;

%disp('bottom left');

%im(r1+1,c1-1)

%disp('bottom');

%im(r1+1,c1)

if im(r1+1,c1-1) == 1

 r1 = r1+1;

 c1 = c1-1;

 cc(2,1:2) = [r1,c1];

 70

 d = 5;

else

 r1 = r1 + 1;

 cc(2,1:2) = [r1,c1];

 d=6;

end

i=2;

while(1)

 if(r1 == fr)

 if(c1 == fc)

 break;

 end

 end

 i = i+1;

switch d

case 0

 [cc,d,r1,c1] = zero(r1,c1,cc,im,i);

case 1

 [cc,d,r1,c1] = one(r1,c1,cc,im,i);

case 2

 [cc,d,r1,c1] = two(r1,c1,cc,im,i);

case 3

 [cc,d,r1,c1] = three(r1,c1,cc,im,i);

 71

case 4

 [cc,d,r1,c1] = four(r1,c1,cc,im,i);

case 5

 [cc,d,r1,c1] = five(r1,c1,cc,im,i);

case 6

[cc,d,r1,c1] = six(r1,c1,cc,im,i);

case 7

 [cc,d,r1,c1] = seven(r1,c1,cc,im,i);

end

end

np = size(cc,1);

for l = 1:np-1

 ch(l,1:2) = cc(l,1:2);

end

np = size(ch,1);

p=ch(1:np,2)+ ch(1:np,1)*j;

N=np;

[k,n]=meshgrid(0:N-1,0:N-1);

E=exp(-2*pi*j*k.*n/N);

a=E*p;

ra=a;

ra(11:end-10)=0;

rp=inv(E)*ra;

 72

figure;

plot(real(p),imag(p),'r.',real(rp),imag(rp),'b.');axis ij;

l = size(ra,1);

for i = 1:10

 pp1(i,1) = ra(i);

end

j = 11;

for i = l-9 : l

 pp1(j,1) = ra(i);

 j = j + 1;

end

w=pp1;

Function Definitions

function [cc,d,r1,c1]=zero(r1,c1,cc,im,i)

 if im(r1,c1+1) == 1

 c1 = c1+1;

 d = 0;

 cc(i,1:2) = [r1,c1];

 break;

end

 if im(r1-1,c1) == 1

 r1 = r1-1;

 d = 2;

 73

 cc(i,1:2) = [r1,c1];

 break;

end

 if im(r1-1,c1+1) == 1

 r1 = r1-1;

 c1 = c1+1;

 d = 1;

 cc(i,1:2) = [r1,c1];

 break;

end

if im(r1+1,c1) == 1

 r1 = r1+1;

 d = 6;

 cc(i,1:2) = [r1,c1];

 break;

end

if im(r1+1,c1+1) == 1

 r1 = r1+1;

 c1 = c1+1;

 d = 7;

 cc(i,1:2) = [r1,c1];

 break;

end

 74

function [cc,d,r1,c1]=one(r1,c1,cc,im,i)

 if im(r1-1,c1+1) == 1

 r1 = r1-1;

 c1 = c1+1;

 d = 1;

 cc(i,1:2) = [r1,c1]; break;

end

 if im(r1-1,c1) == 1

 r1 = r1-1;

 d = 2;

 cc(i,1:2) = [r1,c1]; break;

end

if im(r1,c1+1) == 1

 c1 = c1+1;

 d = 0;

 cc(i,1:2) = [r1,c1]; break;

end

 if im(r1-1,c1-1) == 1

 r1 = r1-1;

 c1 = c1-1;

 d = 3;

 cc(i,1:2) = [r1,c1]; break;

end

 75

if im(r1+1,c1+1) == 1

 r1 = r1+1;

 c1 = c1+1;

 d = 7;

 cc(i,1:2) = [r1,c1]; break;

end

function [cc,d,r1,c1]=two(r1,c1,cc,im,i)

 if im(r1-1,c1) == 1

 r1 = r1-1;

 d = 2;

 cc(i,1:2) = [r1,c1]; break;

end

if im(r1,c1+1) == 1

 c1 = c1+1;

 d = 0;

 cc(i,1:2) = [r1,c1]; break;

end

 if im(r1-1,c1+1) == 1

 r1 = r1-1;

 c1 = c1+1;

 d = 1;

 cc(i,1:2) = [r1,c1]; break;

 76

end

if im(r1-1,c1-1) == 1

 r1 = r1-1;

 c1 = c1-1;

 d = 3;

 cc(i,1:2) = [r1,c1]; break;

end

if im(r1,c1-1) == 1

 c1 = c1-1;

 d = 4;

 cc(i,1:2) = [r1,c1]; break;

end

function [cc,d,r1,c1]=three(r1,c1,cc,im,i)

 if im(r1-1,c1-1) == 1

 r1 = r1-1;

 c1 = c1-1;

 d = 3;

 cc(i,1:2) = [r1,c1]; break;

end

 if im(r1-1,c1) == 1

 r1 = r1-1;

 d = 2;

 77

 cc(i,1:2) = [r1,c1]; break;

end

if im(r1+1,c1-1) == 1

 r1 = r1+1;

 c1 = c1-1;

 d = 5;

 cc(i,1:2) = [r1,c1]; break;

end

 if im(r1-1,c1+1) == 1

 r1 = r1-1;

 c1 = c1+1;

 d = 1;

 cc(i,1:2) = [r1,c1]; break;

end

if im(r1,c1-1) == 1

 c1 = c1-1;

 d = 4;

 cc(i,1:2) = [r1,c1]; break;

end

function [cc,d,r1,c1]=four(r1,c1,cc,im,i)

 if im(r1,c1-1) == 1

 c1 = c1-1;

 78

 d = 4;

 cc(i,1:2) = [r1,c1]; break;

end

 if im(r1-1,c1) == 1

 r1 = r1-1;

 d = 2;

 cc(i,1:2) = [r1,c1]; break;

end

if im(r1+1,c1-1) == 1

 r1 = r1+1;

 c1 = c1-1;

 d = 5;

 cc(i,1:2) = [r1,c1]; break;

end

 if im(r1+1,c1) == 1

 r1 = r1+1;

 d = 6;

 cc(i,1:2) = [r1,c1]; break;

end

if im(r1-1,c1-1) == 1

 r1 = r1-1;

 c1 = c1-1;

 d = 3;

 79

 cc(i,1:2) = [r1,c1]; break;

end

function [cc,d,r1,c1]=five(r1,c1,cc,im,i)

if im(r1+1,c1-1) == 1

 r1 = r1+1;

 c1 = c1-1;

 d = 5;

 cc(i,1:2) = [r1,c1]; break;

end

if im(r1-1,c1-1) == 1

 r1 = r1-1;

 c1 = c1-1;

 d = 3;

 cc(i,1:2) = [r1,c1]; break;

end

if im(r1,c1-1) == 1

 c1 = c1-1;

 d = 4;

 cc(i,1:2) = [r1,c1]; break;

end

if im(r1+1,c1) == 1

 r1 = r1+1;

 80

 d = 6;

 cc(i,1:2) = [r1,c1]; break;

end

if im(r1+1,c1+1) == 1

 r1 = r1+1;

 c1 = c1+1;

 d = 7;

 cc(i,1:2) = [r1,c1]; break;

end

function [cc,d,r1,c1]=six(r1,c1,cc,im,i)

 if im(r1+1,c1) == 1

 r1 = r1+1;

 d = 6;

 cc(i,1:2) = [r1,c1]; break;

end

 if im(r1,c1-1) == 1

 c1 = c1-1;

 d = 4;

 cc(i,1:2) = [r1,c1]; break;

end

if im(r1,c1+1) == 1

 c1 = c1+1;

 81

 d = 0;

 cc(i,1:2) = [r1,c1]; break;

end

 if im(r1+1,c1-1) == 1

 r1 = r1+1;

 c1 = c1-1;

 d = 5;

 cc(i,1:2) = [r1,c1]; break;

end

if im(r1+1,c1+1) == 1

 r1 = r1+1;

 c1 = c1+1;

 d = 7;

 cc(i,1:2) = [r1,c1]; break;

end

function [cc,d,r1,c1]=seven(r1,c1,cc,im,i)

 if im(r1+1,c1+1) == 1

 r1 = r1+1;

 c1 = c1+1;

 d = 7;

 cc(i,1:2) = [r1,c1]; break;

 82

 end

 if im(r1-1,c1+1) == 1

 r1 = r1-1;

 c1 = c1+1;

 d = 1;

 cc(i,1:2) = [r1,c1]; break;

end

if im(r1,c1+1) == 1

 c1 = c1+1;

 d = 0;

 cc(i,1:2) = [r1,c1]; break;

end

 if im(r1+1,c1-1) == 1

 r1 = r1+1;

 c1 = c1-1;

 d = 5;

 cc(i,1:2) = [r1,c1]; break;

end

if im(r1+1,c1) == 1

 r1 = r1+1;

 d = 6;

 cc(i,1:2) = [r1,c1]; break;

end

 83

Neural Network Training

load('E:\finmat\a1.mat');

load('E:\finmat\b1.mat');

load('E:\finmat\c1.mat');

load('E:\finmat\d1.mat');

load('E:\finmat\e1.mat');

load('E:\finmat\f1.mat');

load('E:\finmat\g1.mat');

load('E:\finmat\h1.mat');

load('E:\finmat\i1.mat');

load('E:\finmat\j1.mat');

load('E:\finmat\k1.mat');

load('E:\finmat\l1.mat');

load('E:\finmat\m1.mat');

load('E:\finmat\n1.mat');

load('E:\finmat\o1.mat');

load('E:\finmat\p1.mat');

load('E:\finmat\q1.mat');

load('E:\finmat\r1.mat');

load('E:\finmat\s1.mat');

load('E:\finmat\t1.mat');

load('E:\finmat\u1.mat');

 84

load('E:\finmat\v1.mat');

load('E:\finmat\w1.mat');

load('E:\finmat\x1.mat');

load('E:\finmat\y1.mat');

load('E:\finmat\z1.mat');

load('E:\finmat\zn01.mat');

load('E:\finmat\zn11.mat');

load('E:\finmat\zn21.mat');

load('E:\finmat\zn31.mat');

load('E:\finmat\zn41.mat');

load('E:\finmat\zn51.mat');

load('E:\finmat\zn61.mat');

load('E:\finmat\zn71.mat');

load('E:\finmat\zn81.mat');

load('E:\finmat\zn91.mat');

load('E:\finmat\a2.mat');

load('E:\finmat\b2.mat');

load('E:\finmat\c2.mat');

load('E:\finmat\d2.mat');

load('E:\finmat\e2.mat');

load('E:\finmat\f2.mat');

load('E:\finmat\g2.mat');

load('E:\finmat\h2.mat');

 85

load('E:\finmat\i2.mat');

load('E:\finmat\j2.mat');

load('E:\finmat\k2.mat');

load('E:\finmat\l2.mat');

load('E:\finmat\m2.mat');

load('E:\finmat\n2.mat');

load('E:\finmat\o2.mat');

load('E:\finmat\p2.mat');

load('E:\finmat\q2.mat');

load('E:\finmat\r2.mat');

load('E:\finmat\s2.mat');

load('E:\finmat\t2.mat');

load('E:\finmat\u2.mat');

load('E:\finmat\v2.mat');

load('E:\finmat\w2.mat');

load('E:\finmat\x2.mat');

load('E:\finmat\y2.mat');

load('E:\finmat\z2.mat');

load('E:\finmat\zn02.mat');

load('E:\finmat\zn12.mat');

load('E:\finmat\zn22.mat');

load('E:\finmat\zn32.mat');

load('E:\finmat\zn42.mat');

 86

load('E:\finmat\zn52.mat');

load('E:\finmat\zn62.mat');

load('E:\finmat\zn72.mat');

load('E:\finmat\zn82.mat');

load('E:\finmat\zn92.mat');

load('E:\finmat\a3.mat');

load('E:\finmat\b3.mat');

load('E:\finmat\c3.mat');

load('E:\finmat\d3.mat');

load('E:\finmat\e3.mat');

load('E:\finmat\f3.mat');

load('E:\finmat\g3.mat');

load('E:\finmat\h3.mat');

load('E:\finmat\i3.mat');

load('E:\finmat\j3.mat');

load('E:\finmat\k3.mat');

load('E:\finmat\l3.mat');

load('E:\finmat\m3.mat');

load('E:\finmat\n3.mat');

load('E:\finmat\o3.mat');

load('E:\finmat\p3.mat');

load('E:\finmat\q3.mat');

load('E:\finmat\r3.mat');

 87

load('E:\finmat\s3.mat');

load('E:\finmat\t3.mat');

load('E:\finmat\u3.mat');

load('E:\finmat\v3.mat');

load('E:\finmat\w3.mat');

load('E:\finmat\x3.mat');

load('E:\finmat\y3.mat');

load('E:\finmat\z3.mat');

load('E:\finmat\zn03.mat');

load('E:\finmat\zn13.mat');

load('E:\finmat\zn23.mat');

load('E:\finmat\zn33.mat');

load('E:\finmat\zn43.mat');

load('E:\finmat\zn53.mat');

load('E:\finmat\zn63.mat');

load('E:\finmat\zn73.mat');

load('E:\finmat\zn83.mat');

load('E:\finmat\zn93.mat');

load('E:\finmat\ac3.mat');

load('E:\finmat\bc3.mat');

load('E:\finmat\cc3.mat');

load('E:\finmat\dc3.mat');

load('E:\finmat\ec3.mat');

 88

load('E:\finmat\fc3.mat');

load('E:\finmat\gc3.mat');

load('E:\finmat\hc3.mat');

load('E:\finmat\ic3.mat');

load('E:\finmat\jc3.mat');

load('E:\finmat\kc3.mat');

load('E:\finmat\lc3.mat');

load('E:\finmat\mc3.mat');

load('E:\finmat\nc3.mat');

load('E:\finmat\oc3.mat');

load('E:\finmat\pc3.mat');

load('E:\finmat\qc3.mat');

load('E:\finmat\rc3.mat');

load('E:\finmat\sc3.mat');

load('E:\finmat\tc3.mat');

load('E:\finmat\uc3.mat');

load('E:\finmat\vc3.mat');

load('E:\finmat\wc3.mat');

load('E:\finmat\xc3.mat');

load('E:\finmat\yc3.mat');

load('E:\finmat\zc3.mat');

load('E:\finmat\ac1.mat');

load('E:\finmat\bc1.mat');

 89

load('E:\finmat\cc1.mat');

load('E:\finmat\dc1.mat');

load('E:\finmat\ec1.mat');

load('E:\finmat\fc1.mat');

load('E:\finmat\gc1.mat');

load('E:\finmat\hc1.mat');

load('E:\finmat\ic1.mat');

load('E:\finmat\jc1.mat');

load('E:\finmat\kc1.mat');

load('E:\finmat\lc1.mat');

load('E:\finmat\mc1.mat');

load('E:\finmat\nc1.mat');

load('E:\finmat\oc1.mat');

load('E:\finmat\pc1.mat');

load('E:\finmat\qc1.mat');

load('E:\finmat\rc1.mat');

load('E:\finmat\sc1.mat');

load('E:\finmat\tc1.mat');

load('E:\finmat\uc1.mat');

load('E:\finmat\vc1.mat');

load('E:\finmat\wc1.mat');

load('E:\finmat\xc1.mat');

load('E:\finmat\yc1.mat');

 90

load('E:\finmat\zc1.mat');

load('E:\finmat\b4.mat');

load('E:\finmat\dc4.mat');

load('E:\finmat\e4.mat');

load('E:\finmat\ec4.mat');

load('E:\finmat\f4.mat');

load('E:\finmat\h4.mat');

load('E:\finmat\k4.mat');

load('E:\finmat\r4.mat');

load('E:\finmat\s4.mat');

load('E:\finmat\v4.mat');

load('E:\finmat\w4.mat');

load('E:\finmat\x4.mat');

load('E:\finmat\y4.mat');

load('E:\finmat\z4.mat');

load('E:\finmat\zn34.mat');

load('E:\finmat\zn74.mat');

load('E:\finmat\zn84.mat');

P = [a1 b1 c1 d1 e1 f1 g1 h1 i1 j1 k1 l1 m1 n1 o1 p1 q1 r1 s1 t1 u1 v1 w1 x1 y1 z1 zn01

zn11 zn21 zn31 zn41 zn51 zn61 zn71 zn81 zn91 a2 b2 c2 d2 e2 f2 g2 h2 i2 j2

k2 l2 m2 n2 o2 p2 q2 r2 s2 t2 u2 v2 w2 x2 y2 z2 zn02 zn12 zn22 zn32 zn42

zn52 zn62 zn72 zn82 zn92 a3 b3 c3 d3 e3 f3 g3 h3 i3 j3 k3 l3 m3 n3 o3 p3 q3

r3 s3 t3 u3 v3 w3 x3 y3 z3 zn03 zn13 zn23 zn33 zn43 zn53 zn63 zn73 zn83

zn93 ac1 bc1 cc1 dc1 ec1 fc1 gc1 hc1 ic1 jc1 kc1 lc1 mc1 nc1 oc1 pc1 qc1

rc1 sc1 tc1 uc1 vc1 wc1 xc1 yc1 zc1 ac3 bc3 cc3 dc3 ec3 fc3 gc3 hc3 ic3 jc3

kc3 lc3 mc3 nc3 oc3 pc3 qc3 rc3 sc3 tc3 uc3 vc3 wc3 xc3 yc3 zc3 b4 dc4 e4

ec4 f4 h4 k4 r4 s4 v4 w4 x4 y4 z4 zn34 zn74 zn84];

 91

clear a1 b1 c1 d1 e1 f1 g1 h1 i1 j1 k1 l1 m1 n1 o1 p1 q1 r1 s1 t1 u1 v1 w1 x1 y1 z1 zn01

zn11 zn21 zn31 zn41 zn51 zn61 zn71 zn81 zn91 a2 b2 c2 d2 e2 f2 g2 h2 i2 j2

k2 l2 m2 n2 o2 p2 q2 r2 s2 t2 u2 v2 w2 x2 y2 z2 zn02 zn12 zn22 zn32 zn42

zn52 zn62 zn72 zn82 zn92 a3 b3 c3 d3 e3 f3 g3 h3 i3 j3 k3 l3 m3 n3 o3 p3 q3

r3 s3 t3 u3 v3 w3 x3 y3 z3 zn03 zn13 zn23 zn33 zn43 zn53 zn63 zn73 zn83

zn93 ac1 bc1 cc1 dc1 ec1 fc1 gc1 hc1 ic1 jc1 kc1 lc1 mc1 nc1 oc1 pc1 qc1

rc1 sc1 tc1 uc1 vc1 wc1 xc1 yc1 zc1 ac3 bc3 cc3 dc3 ec3 fc3 gc3 hc3 ic3 jc3

kc3 lc3 mc3 nc3 oc3 pc3 qc3 rc3 sc3 tc3 uc3 vc3 wc3 xc3 yc3 zc3 b4 dc4 e4

ec4 f4 h4 k4 r4 s4 v4 w4 x4 y4 z4 zn34 zn74 zn84;

PR = real(P);

PI = imag(P);

clear P;

%R(1:3,1:36) = PR(1:3,1:36);

%R(4:8,1:36) = PR(16:20,1:36);

%I(1:3,1:36) = PI(1:3,1:36);

%I(4:8,1:36) = PI(16:20,1:36);

P = [PR ; PI];

clear PR PI;

pr = minmax(P);

net = newff(pr,[2000 177],{'tansig','tansig'},'traingdx');

%net=init(net);

clear pr;

tg = eye(177);

% net.adaptParam.passes = 200;

% [net,no,ne]=adapt(net,P,tg);

net.trainParam.epochs = 7000; % Maximum number of epochs to train.

net.trainParam.goal = 0 ; % Maximum number of epochs to train.

 92

%net.trainParam.lr = 0.05;

%net.trainParam.mc = 0.9;

%net.trainParam.max_perf_inc = 1.04;

net.trainParam.min_grad = 1e-18;

netn = train(net,P,tg);

save thenet netn;

save thep P;

Recognition

imfile='f:\tmp\a.bmp';

tmp=imread(imfile);

tmp=imresize(tmp,[128,128]);

sub_im=zeros(size(tmp)+[2 2]);

sub_im(2:end-1,2:end-1)=tmp;

SE=ones(3,3);

sub_im=erode(sub_im,SE);

sub_im=double(dilate(sub_im,SE));

ct_im=zeros(size(sub_im));

for m=2:size(sub_im,1)-1

for n=2:size(sub_im,2)-1

if sub_im(m,n)==1

tmp=sub_im(m-1,n)+sub_im(m+1,n)+sub_im(m,n-1)+sub_im(m,n+1);

if tmp~=4

 93

ct_im(m,n)=1;

end

end

end

end

figure;

imshow(ct_im);

im = ct_im;

[r c] = size(im);

fl = 0;

% To determine starting pixel (r1,c1)

for i = 1:r

 for ii = 1:c

 if im(i,ii) == 1

 r1 = i;

 c1 = ii;

 fl = 1;

 break;

 end

 end

 if fl ==1

 break;

 end

 94

end

cc(1,1:2) = [r1,c1];

fr = r1;

fc = c1;

%disp('bottom left');

%im(r1+1,c1-1)

%disp('bottom');

%im(r1+1,c1)

if im(r1+1,c1-1) == 1

 r1 = r1+1;

 c1 = c1-1;

 cc(2,1:2) = [r1,c1];

 d = 5;

else

 r1 = r1 + 1;

 cc(2,1:2) = [r1,c1];

 d=6;

end

i=2;

while(1)

 if(r1 == fr)

 if(c1 == fc)

 break;

 95

 end

 end

 i = i+1;

switch d

case 0

 [cc,d,r1,c1] = zero(r1,c1,cc,im,i);

case 1

 [cc,d,r1,c1] = one(r1,c1,cc,im,i);

case 2

 [cc,d,r1,c1] = two(r1,c1,cc,im,i);

case 3

 [cc,d,r1,c1] = three(r1,c1,cc,im,i);

case 4

 [cc,d,r1,c1] = four(r1,c1,cc,im,i);

case 5

 [cc,d,r1,c1] = five(r1,c1,cc,im,i);

case 6

 [cc,d,r1,c1] = six(r1,c1,cc,im,i);

case 7

 [cc,d,r1,c1] = seven(r1,c1,cc,im,i);

end

end

 96

np = size(cc,1);

for l = 1:np-1

 ch(l,1:2) = cc(l,1:2);

end

np = size(ch,1);

p=ch(1:np,2)+ ch(1:np,1)*j;

N=np;

[k,n]=meshgrid(0:N-1,0:N-1);

E=exp(-2*pi*j*k.*n/N);

a=E*p;

ra=a;

ra(11:end-10)=0;

l = size(ra,1);

% to extract five lower frequency and five higher frequency components

for i = 1:10

 P(i,1) = ra(i);

end

j = 11;

for i = l-9 : l

 P(j,1) = ra(i);

 j = j + 1;

end

PR = real(P);

 97

PI = imag(P);

clear P;

P = [PR;PI];

load('sainet2.mat');

O = sim(netc,P);

max = O(1);

m = 1;

for(i = 2:177)

 if O(i)>max

 m = i;

 max = O(i);

 end

end

switch m

case {1,37,73,109,135}

 disp('The character is a');

case {2,38,74,110,136,161}

 disp('The character is b');

case {3,39,75,111,137}

 disp('The character is c');

case {4,40,76,112,138,162}

 disp('The character is d');

case {5,41,77,113,139,163,164}

 98

 disp('The character is e');

case {6,42,78,114,140,165}

 disp('The character is f');

case {7,43,79,115,141}

 disp('The character is g');

case {8,44,80,116,142,166}

 disp('The character is h');

case {9,45,81,117,143}

 disp('The character is i');

case {10,46,82,118,144}

 disp('The character is j');

case {11,47,83,119,145,167}

 disp('The character is k');

case {12,48,84,120,146}

 disp('The character is l');

case {13,49,85,121,147}

 disp('The character is m');

case {14,50,86,122,148}

 disp('The character is n');

case {15,51,87,123,149}

 disp('The character is o');

case {16,52,88,124,150}

 disp('The character is p');

 99

case {17,53,89,125,151}

 disp('The character is q');

case {18,54,90,126,152,168}

 disp('The character is r');

case {19,55,91,127,153,169}

 disp('The character is s');

case {20,56,92,128,154}

 disp('The character is t');

case {21,57,93,129,155}

 disp('The character is u');

case {22,58,94,130,156,170}

 disp('The character is v');

case {23,59,95,131,157,171}

 disp('The character is w');

case {24,60,96,132,158,172}

 disp('The character is x');

case {25,61,97,133,159,173}

 disp('The character is y');

case {26,62,98,134,160,174}

 disp('The character is z');

case {27,63,99}

 disp('The number is 0');

case {28,64,100}

 100

 disp('The number is 1');

case {29,65,101}

 disp('The number is 2');

case {30,66,102,175}

 disp('The number is 3');

case {31,67,103}

 disp('The number is 4');

case {32,68,104}

 disp('The number is 5');

case {33,69,105}

 disp('The number is 6');

case {34,70,106,176}

 disp('The number is 7');

case {35,71,107,177}

 disp('The number is 8');

case {36,72,108}

 disp('The number is 9');

end

Concurrency Checker

function [pin, ct, lc, st , sr,dt] = concurrent(pin, ct, lc,st,sr,dt)

% Code for concurrency checker

%pin represents pincode; st - state ; sr - represents street name;

 101

%lc = localityname; ct = city name; dt - district name

load('pin.mat');

load('st.mat');

load('sr.mat');

load('ct.mat');

load('lc.mat');

load('dt.mat')

%[pin, ct, lc, st , sr] = concurrent(pin, ct, lc,st,sr);

% The above statement passes control from the main program to this function

fl = conc(pin,lc);

% Conc is a function that checks is the pincode and locality name are concurrent

if fl == 0

 [pin, lc] = correct(pin,lc,st,dt)

 % This function corrects the pincode or locality

end

fl = conc(st,pin)

if fl == 0

 st = correct(st,pin)

end

% pin and st now represent the pincode anf street code

% These are the imperative fields required for generating the DPC

 102

Database for Street Codes

clear;clc

load('street');

%n1 = 0;

while (1)

n1 = n1 + 1;

T1 = input('Enter the street name :');

T2 = input('Enter the street code :');

[m,len1] = size(T1);

[m,len2] = size(T2);

S(n1,1:len1) = T1(1,1:len1);

C(n1,1:len2) = T2(1,1:len2);

p = input('Any more ?? (0/1)')

if p == 0

 break;

end

end

save street S C n1;

Delivery Point Code Generation

load('street');

[m n] = size(S);

T = input('Enter the street name :');

 103

[lent,n] = size(T);

t = 0;

for i = 1:m

flag =1;

 [lens,n] = size(S(i));

if lent > lens

 len = lens;

else

 len = lent;

end

 for j = 1:len

 if S(i,j) ~= T(1,j)

 flag = 0;

 break;

 end

 end

 if flag == 1

 t = i;

 break;

 end

end

C(i,1)

pin = '641013';

 104

cd = '0';

sc=100000+C(i,1);

sc = num2str(sc);

[l1,lensc] = size(sc);

lensc = lensc-1;

for i = 1:lensc

 sc(1,i) = sc(1,i+1);

end

dpc = strcat(pin,cd,sc);

dpc = dpc(1,1:12)

Barcode Generation

I = ones(60,1) ;

for i = 1:12

 chr = dpc(1,i);

 fn = strcat('e:\proj\barcodes\',chr,'.bmp');

 im = imread(fn);

 im = imresize(im,[60,60]);

 I = [I im];

end

figure;

imshow(I,[0 1]);

 105

Front End Codes

function varargout = demo3(varargin)

% DEMO3 Application M-file for demo3.fig

% FIG = DEMO3 launch demo3 GUI.

% DEMO3('callback_name', ...) invoke the named callback.

% Last Modified by GUIDE v2.0 11-Apr-2003 00:03:25

%cd \

 % cd fin

if nargin <= 1 % LAUNCH GUI

if nargin == 0

initial_dir = pwd;

elseif nargin == 1 & exist(varargin{1},'dir')

initial_dir = varargin{1};

else

errordlg('Input argument must be a valid directory','Input Argument Error!')

return

end

% Open FIG-file

fig = openfig(mfilename,'reuse'); % Generate a structure of handles to pass to

callbacks, and store it.

% Use system color scheme for figure:

set(fig,'Color',get(0,'defaultUicontrolBackgroundColor'));

handles = guihandles(fig);

guidata(fig, handles);

 106

% Populate the listbox

load_listbox(initial_dir,handles)

% Return figure handle as first output argument

if nargout > 0

varargout{1} = fig;

end

elseif ischar(varargin{1}) % INVOKE NAMED SUBFUNCTION OR CALLBACK

 try

 [varargout{1:nargout}] = feval(varargin{:}); % FEVAL switchyard

 catch

 disp(lasterr);

 end

end

%| ABOUT CALLBACKS:

%| GUIDE automatically appends subfunction prototypes to this file, and

%| sets objects' callback properties to call them through the FEVAL

%| switchyard above. This comment describes that mechanism.

%|

%| Each callback subfunction declaration has the following form:

%| <SUBFUNCTION_NAME>(H, EVENTDATA, HANDLES, VARARGIN)

%|

%| The subfunction name is composed using the object's Tag and the

%| callback type separated by '_', e.g. 'slider2_Callback',

 107

%| 'figure1_CloseRequestFcn', 'axis1_ButtondownFcn'.

%|

%| H is the callback object's handle (obtained using GCBO).

%|

%| EVENTDATA is empty, but reserved for future use.

%|

%| HANDLES is a structure containing handles of components in GUI using

%| tags as fieldnames, e.g. handles.figure1, handles.slider2. This

%| structure is created at GUI startup using GUIHANDLES and stored in

%| the figure's application data using GUIDATA. A copy of the structure

%| is passed to each callback. You can store additional information in

%| this structure at GUI startup, and you can change the structure

%| during callbacks. Call guidata(h, handles) after changing your

%| copy to replace the stored original so that subsequent callbacks see

%| the updates. Type "help guihandles" and "help guidata" for more

%| information.

%|

%| VARARGIN contains any extra arguments you have passed to the

%| callback. Specify the extra arguments by editing the callback

%| property in the inspector. By default, GUIDE sets the property to:

%| <MFILENAME>('<SUBFUNCTION_NAME>', gcbo, [], guidata(gcbo))

%| Add any extra arguments after the last argument, before the final

%| closing parenthesis.

 108

% --

function varargout = togglebutton1_Callback(h, eventdata, handles, varargin)

% Stub for Callback of the uicontrol handles.togglebutton1.

disp('togglebutton1 Callback not implemented yet.')

% --

function varargout = pushbutton4_Callback(h, eventdata, handles, varargin)

% Stub for Callback of the uicontrol handles.pushbutton4.

disp('pushbutton4 Callback not implemented yet.')

% --

function varargout = pushbutton5_Callback(h, eventdata, handles, varargin)

% Stub for Callback of the uicontrol handles.pushbutton5.

disp('pushbutton5 Callback not implemented yet.')

% --

function varargout = pushbutton6_Callback(h, eventdata, handles, varargin)

% Stub for Callback of the uicontrol handles.pushbutton6.

disp('pushbutton6 Callback not implemented yet.')

% --

function varargout = pushbutton7_Callback(h, eventdata, handles, varargin)

% Stub for Callback of the uicontrol handles.pushbutton7.

disp('pushbutton7 Callback not implemented yet.')

% --

function varargout = pushbutton8_Callback(h, eventdata, handles, varargin)

% Stub for Callback of the uicontrol handles.pushbutton8.

 109

disp('pushbutton8 Callback not implemented yet.')

% --

function varargout = pushbutton9_Callback(h, eventdata, handles, varargin)

% Stub for Callback of the uicontrol handles.pushbutton9.

disp('pushbutton9 Callback not implemented yet.')

% --

function varargout = pushbutton10_Callback(h, eventdata, handles, varargin)

% Stub for Callback of the uicontrol handles.pushbutton10.

disp('pushbutton10 Callback not implemented yet.')

% --

function varargout = pushbutton11_Callback(h, eventdata, handles, varargin)

% Stub for Callback of the uicontrol handles.pushbutton11.

disp('pushbutton11 Callback not implemented yet.')

% --

% Callback for list box - open .fig with guide, otherwise use open

% --

function varargout = listbox1_Callback(h, eventdata, handles, varargin)

if strcmp(get(handles.figure1,'SelectionType'),'open')

index_selected = get(handles.listbox1,'Value');

file_list = get(handles.listbox1,'String');

filename = file_list{index_selected};

if handles.is_dir(handles.sorted_index(index_selected))

 110

cd (filename)

load_listbox(pwd,handles)

else

 [path,name,ext,ver] = fileparts(filename);

 switch ext

 case '.fig'

 guide (filename)

 otherwise

 try

 fn = strcat(pwd,'\',filename);

 I = imread(fn);

 % handles;

 %figure(get(handles.figure1));

% figure('Destination Address Interpretation for Automating the Sorting Process of

Indian Postal System') ;

%axes(handles.frame10);

%subplot(axes(handles.frame10));

 % axes(handles.axes1);

 subplot(1,3,1);

 imshow(I);

 %axis off;

 title('Input Character');%figure(1);

 fn = strcat(pwd,'\',filename);

 111

 ra = tcf(fn);

 %open(filename)

 catch

 errordlg(lasterr,'File Type Error','modal')

 end

 end

 end

end

% --

% Read the current directory and sort the names

% --

function load_listbox(dir_path,handles)

cd (dir_path)

dir_struct = dir(dir_path);

[sorted_names,sorted_index] = sortrows({dir_struct.name}');

handles.file_names = sorted_names;

handles.is_dir = [dir_struct.isdir];

handles.sorted_index = [sorted_index];

guidata(handles.figure1,handles)

set(handles.listbox1,'String',handles.file_names,... 'Value',1)

set(handles.text1,'String',pwd)

 112

References

1. Sargur N. Srihari, Venu Govindarajulu, Ajay Shekhawat, (CEDAR), NY 14228,

“Interpretation of Handwritten addresses in US Mail Stream”

2. Rafael C. Gonzalez, Richard E.Woods, “Digital Image Processing”, Pearson

Education Asia, 1992 edition.

3. Anil K. Jain, “Fundamentals of Digital Image Processing”, EEE, 1989 edition.

4. Dwayne Phillips, “Image Processing in C”, BPB Publications, 1995.

5. Nick Efford, “Digital Image Processing”, Pearson Education, 2000.

6. James A. Freeman, David M. Skapura, “Neural Networks Algorithms,

Applications and Programming Techniques”, Pearson Education Asia 1991

edition.

