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Introduction 
 

Closed form analytical solutions for the wave equation can be easily determined only 

for a few symmetrical structures such as cylindrical and slab waveguides. In complicated 

structures with bends such as y-couplers, analytic closed form solutions cannot be 

derived.  

     

Figure 1a: Cylindrical waveguide                    

 

   

Figure 1b:  Y Coupler 

 

 

The Y-Coupler, as shown in Figure 1b, couples an input waveguide to two output 

waveguides. As the mode would dynamically change as the wave propagates through 

such structure, it is hard to determine the losses using analytical methods. Beam 

propagation method can be efficiently used for analyzing such structures. 
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Beam propagation method 

The beam propagation method is a numerical way of determining the fields inside a 

waveguide. With this method, the mode profile of an unusual waveguides such as y-

couplers can be determined with ease. The dynamic mode profile can be accurately 

estimated as the wave propagates through the wave guide. 

 

The beam propagation method essentially decomposes a mode into a superposition of 

plane waves, each traveling in a different direction. These individual plane waves are 

propagated through a finite predetermined distance through the wave guide until the point 

where the field needs to be determined has arrived. At this point, all the individual plane 

waves are numerically added in order to get back the spatial mode.  

 

 

 
 

Figure 2: My simulation of the diffraction of a Gaussian beam using BPM 

 

 

This process precisely corresponds to the Fourier way of analyzing. Specifically, 

according to Fourier theory, any periodic signal can be decomposed into complex 

sinusoids of different frequencies. When all of these sinusoids are added, we would get 

back the original signal. In beam propagation method, a mode is decomposed into 

different plane waves, which indeed are sinusoids of different frequencies. The basic idea 

here is to split a complicated problem into a simpler problem for which solutions are 

obvious. Since wave equation is linear, all these simple solutions can be added back to 

obtain the complicated solution.  

 

For instance, in Figure 2, I have numerically computed the diffraction of a Gaussian 

beam as it propagates through a medium. 



 4 

 

Principle of superposition 

 

This principle is forms the foundation of the beam propagation theory. The principle of 

superposition states that, for a linear system, a linear combination of solutions to the 

system is also a solution to the same linear system.  

 

The superposition principle applies to linear systems of algebraic equations, linear 

differential equations, or systems of linear differential equations. Since we are 

considering a linear medium, the superposition principle is valid.  

 

Consider a slab waveguide as shown in Figure 3. Any guided field inside this wave guide 

should necessarily satisfy the wave equation. 

 

 

 

If the medium is isotropic, then plane waves are natural solutions of the wave equation. 

 

 
 

 
Figure 3: Slab wave guide 

 

Since the wave equation is linear, any linear superposition of solutions will also 

constitute a valid solution. This important fact forms the foundation of the beam 

propagation theory. 

 

 In order to describe the general mode of a waveguide, a superposition of plane waves, 

each with identical angular frequency, but different propagation vector, would be used. 

Thus, the essence of the theory is that plane waves form a basis set for the mode 

description. 
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Fundamental mode of a Hermite Gaussian beam 

 

In this section, let us see, how the Gaussian amplitude profile, which is the fundamental 

TEMoo mode can be represented in the form of a superposition of plane waves. 

Analytically, a Gaussian can be represented as 

 

 
  

 

 
            Figure 4a                                  Figure 4b                                    Figure 4c   

 

 

Figure 4a: Gaussian beam profile of a HeNe laser, which I captured after spatial filtering. 

Figure 4b: An ideal simulated Gaussian beam profile 

Figure 4c: 3D plot of a Gaussian 

 

 

The idea here is to split the above Gaussian into number of plane waves weighted by 

complex factors known as Fourier coefficients. The Fourier and inverse Fourier 

transforms are characterized as follows. 

 

 

 

 

In the first equation, f(x) (Gaussian), is represented just as an integral of weighted 

sinusoids. Note that F(k)s are mere complex numbers that act as weighting factors of the 

sinusoids. In the beam propagation approach, it can be rightly said that the Fourier kernel, 

that is, the sinusoids (with different k’s) are infact plane waves with different propagation 

vectors. Thus, in short, with the above expression, any finite analytical function can be 

represented as a sum of plane waves. Note that this is possible only since the Fourier 

transform is linear. 
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For a Gaussian beam, the Fourier coefficients can be shown to be 
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The whole theory explained above is represented by the following picture (Figure 5). 

 

 

 

 

Figure 5: The Gaussian beam represented in terms of multiple plane wave components. 

 

In order to obtain an appreciation for the above picture, we should first have an 

appreciation of the propagation vector K. The total magnitude of K is identical for all 

components in a mode. However, the relative sizes of  Kx and Kz vary.  

 

Since Ky is assumed to be zero in the above picture, the wave propagates only in the xz 

plane, and therefore  

 

                                               
22

zx KKK +=  

 

Consequently, Kz is maximum when Kx is zero, which can be clearly seen from in 

Figure 5. Thus the axial propagation vector is the vector with highest magnitude. As Kx 

increases, the amplitude of the plane wave decreases. 

 

 The spatial amplitude distribution of the Gaussian is essentially comprised by the 

amplitude and the direction of the individual plane waves. The length of each arrow 

represents the amplitude of the K vector while the direction of each arrow represents the 

direction of the K vector. 

 

The important point in the beam propagation technique is to calculate the propagation 

effects using the phase space representation, and then add phase shifts caused by the 

waveguide structure using the spatial representation of the mode.   
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Numerical Implementation using Discrete Fourier Transforms 

 

In order to numerically implement a beam propagation technique (as I did in Figure 2), 

we need to work with digital implementations of Fourier transforms known as the 

discrete Fourier transforms.  

 

A brief introduction to discrete Fourier transforms in given below. For more detained 

analysis, the interested reader is referred to standard Digital Signal Processing books, 

such as the one by Alan Oppenheim. 

 

The continuous Fourier transform is defined as  

 

 

 
(1)

 

 

Now consider generalization to the case of a discrete function, by letting 

, where , with , ..., . Writing this out gives the discrete Fourier 

transform as  

 

 

 
(2)

 

 

The inverse transform is then  

 

 
(3)

 

Discrete Fourier transforms are extremely useful because they reveal periodicities in 

input data as well as the relative strengths of any periodic components. There are a few 

subtleties in the interpretation of discrete Fourier transforms, however. In general, the 

discrete Fourier transform of a real sequence of numbers will be a sequence of complex 

numbers of the same length. In particular, if are real, then and are related by  

 

 (4)

 

for , 1, ..., , where denotes the complex conjugate. This means that the 

component is always real for real data.  

 

As a result of the above relation, a periodic function will contain transformed peaks in not 

one, but two places. This happens because the periods of the input data become split into  

"positive" and "negative" frequency complex components.  
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Figure 6: Introduction to discrete fourier transforms 

 

The plots above show the real part (red), imaginary part (blue), and complex modulus 

(green) of the discrete Fourier transforms of the functions (left figure) and 

(right figure) sampled 50 times over two periods. In the left figure, 

the symmetrical spikes on the left and right side are the "positive" and "negative" 

frequency components of the single sine wave.  

 

Similarly, in the right figure, there are two pairs of spikes, with the larger green spikes 

corresponding to the lower-frequency stronger component and the smaller green 

spikes corresponding to the higher-frequency weaker component. A suitably scaled plot 

of the complex modulus of a discrete Fourier transform is commonly known as a power 

spectrum.  

 

Beam diffraction 

 

In order to propagate a wave through a distance L in the z direction, we fist decompose 

the spatial profile of the wave into a series of plane wave components and advance each 

of these plane wave components through a distance of L. Once we have propagated to the 

point, we then superimpose all these plane wave components to get back our spatial mode 

at that point.  

 

 
Figure 7: Different path lengths incurred by different plane wave components 
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As each plane wave is traveling in a different direction, each would accumulate a 

different amount of phase due to the different path lengths between the source and 

destination planes along different directions.  

 

Let us now consider a practical example. Consider the propagation of a Gaussian beam 

through a homogeneous isotropic medium. In order to achieve this numerically, the 

following steps should be followed. 

 

1. The whole process is akin to a linear system analysis, where the output of a linear 

time invariant system with impulse response h(t) is the convolution of x(t) and 

h(t), where x(t) is the applied input. 

 

 
Figure 8: Beam propagation as a linear system 

 

2. The can be accomplished in the Fourier domain just as a multiplication. That is, 

we first take the Fourier transform of x(t), then multiply it with the Fourier 

transform of h(t). When we do this, we would end up with the Fourier transform 

of y(t). In order to obtain y(t) back, we’ll have to take inverse Fourier transform.  

 

3. Let’s extend the above theory for the propagation through free space. In general, 

the Fourier transform of h(t) is known as the transfer function. h(t) is itself known 

as the impulse response. Hence, when we have the impulse response, we convolve 

with the input function, and when we have the transfer function, we multiply with 

the Fourier transform of the input function in order to obtain the output. Clearly, 

in the second case, we’d obtain the Fourier transform of the output, while in the 

first case, we would obtain the output itself. Despite this, we like to do the 

propagation in the Fourier domain, since, multiplication, in general, is simpler to 

do than a convolution.  

 

The transfer function of free space is 

 

 
 

            Where ‘d’ is the distance through which the wave needs to be propagated. 
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4. If  f(x)  is the 1D Gaussian beam to be propagated in free space, through a 

distance ‘d’, we first obtain the Fourier transform of f(x), which I call F(w). Now, 

multiply F(w) with the transfer function of free space H(w) in order to propagate 

through a distance ‘d’. Note that the distance through which the wave needs to be 

propagated‘d’ is decided while defining the transfer function of free space. After 

multiplication, we have, 

 

Y(w) = X(w)  x  H(w) 

 

             Where Y(w) is the Fourier transform of the field at point ‘d’ (after propagation). 

              Obviously, in order to obtain the field at ‘d’, y(x), all we need to do is to apply  

              Inverse Fourier transform to Y (w)  

 

 

 
Figure 9: Two slit diffraction numerically implemented in beam propagation method 
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The best way to appreciate the beam propagation method is to analyze examples. In 

Figure 9, I have shown my implementation of two slit diffraction using the beam 

propagation method. The slits are located in the left. An incident plane wave diffracts out 

of the two slits and expands as it propagates through the medium. A lens is used in order 

to bring the far field closer. A screen placed after the lens would shown Young’s fringes 

as shown in Figure 9. 

 

The code that I wrote in MATLAB for implementing the above numerical models is 

shown below. 

Beam Propagation code: (Author: Sri Rama Prasanna Pavani)  

 

 
function [Im, Power, R, SFG, CF] = bpm(G, K, N, l, dz, nz, absorb, AF) 

FG = fft(G); 

SFG = fftshift(FG); 

 

figure;plot(G);figure;plot(abs(SFG)); 

 

% Transfer function of free space. 

k0 = 2*pi/l; 

 

for j = 1:N; 

    H(j) = exp(i*(k0^2-(K(j))^2)^0.5 * dz); 

end 

 

figure;plot(abs(H)); title('H');figure; 

 

 

%%%%% Propagation %%%%%%% 

for n = 1:nz 

     

    SFG = SFG .* H; 

     

    R = ifft(SFG); 

            

    if (absorb == 1)   

        R = R .* AF; 

        SFG = fft(R); 

    end 

     

         

    for cnt = 1:N; 

          sR(cnt) = R(cnt) ^ (1/3); 

    end 

 

    CF(n,:) = R; 

    Im(n,:) = sR; 

    Power(n) = R * R'; 

  

end  
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Gaussian code: (Author: Sri Rama Prasanna Pavani)   

 
function [G K N] = gaussian(l,dX) 

 

R = 40; 

w = 100 * l; 

K = [-R/2:dX:R/2]; 

N = R/dX + 1; 

 

% Gaussian 

for j = 1:N 

     

    G(j) = exp(-((K(j))^2)/w); 

            

end 

%  

% figure;plot(G, K); title('Transverse Gaussian beam');  

% xlabel('Intensity'); ylabel('Samples (N)'); 
 

 

Double slit code:  (Author: Sri Rama Prasanna Pavani)  

 
function [] = DoubleSlit(absorb) 

 

% Size of object = 5 mm. Object samples = (5*10^-3)/(10*10^-6) = 500. 

% Double slit separation = 200*10^-6. Separation samples = 200/10 = 20 

% Double slit width = 40*10^-6. Width samples = 40/10 = 4 

 

DS = [zeros(1,486), ones(1,4), zeros(1,20), ones(1,4), zeros(1,486)]; 

 

l =  0.4*10^-6; 

[Im, S, P] = lbpm(DS, l, absorb, 1, 10*10^-6); 

 

figure;imagesc(abs(Im)); 

Double slit diffraction code: (Author: Sri Rama Prasanna Pavani)    
 

% All lengths are in meters 

clear all; clc; 

 

% Sample spacing. 

dZ = 100 * 10^-6; 

 

% Grid width = 1cm = 10^-2  => N = (10^-2)/(10*10^-6)) 

% Grid width = 1cm = 10000 * 10-6 

N = 10000; 

 

% Size of object = 5 mm = 500 samples. 
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% Double slit separation = 200*10^-6. Separation samples = 200/10 = 20 

% Double slit width = 40*10^-6. Width samples = 40/10 = 4 

DS = [zeros(1,4860), ones(1,40), zeros(1,200), ones(1,40), 

zeros(1,4860)]; 

 

% Focal length = (5 * 10^-2)/(100*10^-6); 

%!! f = 5cm = (5 * 10^-2) = 50000 * 10^-6 

f = 50000; 

 

l = 1 * 10^-6; 

 

IX = [1:N]; 

X = (IX - N/2); 

 

% H is the free space transfer function. 

k0 = 2*pi/l; 

for j = 1:N; 

     

    H(j) = exp(i*(k0^2 - (X(j)^2))^0.5 *  f); 

     

end 

 

FDS = fft(DS); 

SFDS = fftshift(FDS); 

 

subplot(4,2,1);plot([1:N], DS); title('Original signal in space'); 

subplot(4,2,2);plot(X,abs(SFDS)); title('Original singal in freq'); 

 

%P1 = FDS .* H; 

 

for j = 1:N 

    P1(j) = SFDS(j) * H(j); 

end 

 

S1 = ifft(P1); 

 

subplot(4,2,3);plot([1:N], abs(S1));title('Signal in space after 

propagating upto lens'); 

subplot(4,2,4);plot(X, abs(P1));title('Signal in freq after propagating 

upto lens'); 

 

 

% L is the lens transmission function. 

 for j = 1:N; 

     

   L(j) = exp(i*(k0)*((X(j))^2)/(2*f)); 

     

end 

 

%S2 = S1 .* L; 

 

for j = 1:N 

    S2(j) = S1(j) * L(j); 

end 

 

P2 = fft(S2); 
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subplot(4,2,6);plot(X, abs(P2));title('Singal in freq after passing 

throgh lens'); 

subplot(4,2,5);plot([1:N], abs(S2));title('Signal in space after 

passing through lens'); 

 

 

P3 = P2 .* H; 

S3 = ifft(P3); 

 

subplot(4,2,8);plot(X, abs(P3));title('Final fourier spectrum'); 

subplot(4,2,7);plot([1:N], abs(S3));title('Final signal in space'); 

 

for j = 1:N 

    DS(j) = DS(j)^(1/3); 

    S1(j) = S1(j)^(1/3); 

    S2(j) = S2(j)^(1/3); 

    S3(j) = S3(j)^(1/3); 

end 

 

ImS = [DS; S1; S2; S3]; 

 

figure;imagesc(abs(ImS')); 

 

 

 

Split step Beam Propagation 

 

Now that I have given the overall idea, I’d like to get into some of the specifics involved 

in the whole process of numerical implementation of beam propagation.  

 

Firstly, we’ll have to note that the memory of a computer is not unlimited. Hence, there is 

a finite fundamental limit on the resolution of the numerical implementation. As a result, 

sometimes, when the diffracted beam goes near the edges, we might encounter 

reflections.  

 

The reflections can be clearly seen in Figure 10a, where the Gaussian beam hits the edges 

as it propagated along z. In order to avoid this we need to have absorbing boundaries. 

Absorbing boundaries are the boundary functions that do not cause reflections. This is 

implemented using a technique called split step beam propagation where in the following 

steps are followed. 

 

1. In order to propagate fro z = 0 to z = d, we should propagate step by step through 

distances delta_z ‘n’ times, such that  

 

n*delta_z = d 

 

2. After each step of propagation, the real field is multiplied with an absorbing function, 

as shown in Figure 11. The main purpose of the absorbing function is to smoothen the 

edges such that the ends of the beam do not hit the edges. The  beam propagation with an 

absorbing function in place is shown in Figure 10b. It can be clearly seen that we no more 

have the reflections we had in Figure 10a. 
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                                                                            Figure 10a: Without absorbing boundaries 

 

 

 

 

 

 

 

                                                                            

 

 

 

                                                                             

 

 

 

                                                                            Figure 10b: Absorbing function  

 

                               

 

 

 

 

 

                                                                            

 

 

 

 

 

 

                                                                            Figure 10c: With absorbing boundaries 
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Figure 11 schematically depicts the split step beam propagation method, where the 

distance to be propagated is systematically split into tiny distances of delta-z. To deal 

with the most generalized case, each step is considered to have a different refractive 

index. Since we are dealing only with homogeneous medium, the refractive index will 

only affect the value of the propagation vector in the transfer function of the medium. 

 

λ

π n
K

2
=  

 

Where n is the refractive index and lambda is wavelength of light. 

 

 

 
Figure 11: Split step beam propagation method 

 

 

Figure 12 shows the beam propagation method implementation on a triangular index 

wave guide. Clearly, at z = 0, a Gaussian profile is launched. As the wave propagates 

through the slab, unguided energy radiates away while the guided mode is found to 

emerge after 6mm propagation. 

 

 

 
Figure 12: BPM on a triangular index slab wave guide. 
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Coupling in waveguides 

 

The beam propagation method is many times used to evaluate the performance of 

waveguide couplers like a Y coupler. By solving the wave equation inside the wave 

guide, it can be established that even confined modes have evanescent tails extending 

beyond the core. The mode propagation on a waveguide that is located adjacent to an 

identical guide can be analyzed with the beam propagation method. 

 

 
Figure 13: Two step index waveguides separated by a very small distance 

 

 

When a Gaussian beam is launched into one of the waveguides (say, in the second one), 

the beam propagation method results are as shown in Figure 14a. It is found that, because 

of the proximity of the two wave guides, the following occur. 

 

1. Soon after a Gaussian beam is launched in the second waveguide, a part of the 

evanescent tail actually lies within the first waveguide. 

 

2. As the beam propagates, it is seen that the wave in the waveguide 1 starts building 

while the wave in the waveguide 2 starts decreasing. 

 

3. When the beam is wave guide 1 reaches its maximum, it can be clearly observed 

that the evanescent tail of the beam in waveguide 1 is actually coupled to the 

second wave guide. 

 

4. As the beam propagates further, the evanescent tail in the second waveguide starts 

building up, and the steps 1 to 4 repeat themselves. 
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                         Figure 14a                                                   Figure 14b 

 

Figure 14a: Beam propagation results when a Gaussian beam is launched in one of the 

                    two waveguides located very close to each other. 

 

Figure 14b: Fields propagated in a bent thin film wave guide calculated using beam  

                   Propagation method. 

 

More results 

 

My MATLAB implementation of propagation through a index profile as shown in Figure 

13 resulted in Figure 15a and 15b. A careful observation would reveal that just when the 

beam in one wave guide reaches its maximum, the beam in the other waveguide reaches 

its minimum.  
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Figure 15a 

 

 
Figure 15b 
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Conclusion 

 

The Beam Propagation Method was described and its use in optical waveguide analysis 

was analyzed. Experimental results were provided and the results were found to agree 

well with the theoretical predictions. Numerical beam propagation method, thus, is a very 

handy tool for accurately determining the field at any point of a complex optical wave 

guide. 
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